Database Query Results : Magnetic Fields, , Cyt‑c

MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Cyt‑c, cyt-c Release into Cytosol: Click to Expand ⟱
Source:
Type:
Cytochrome c
** The term "release of cytochrome c" ** an increase in level for the cytosol.
Small hemeprotein found loosely associated with the inner membrane of the mitochondrion where it plays a critical role in cellular respiration. Cytochrome c is highly water-soluble, unlike other cytochromes. It is capable of undergoing oxidation and reduction as its iron atom converts between the ferrous and ferric forms, but does not bind oxygen. It also plays a major role in cell apoptosis.

The term "release of cytochrome c" refers to a critical step in the process of programmed cell death, also known as apoptosis.
In its new location—the cytosol—cytochrome c participates in the apoptotic signaling pathway by helping to form the apoptosome, which activates caspases that execute cell death.
Cytochrome c is a small protein normally located in the mitochondrial intermembrane space. Its primary role in healthy cells is to participate in the electron transport chain, a process that helps produce energy (ATP) through oxidative phosphorylation.
Mitochondrial outer membrane permeability leads to the release of cytochrome c from the mitochondria into the cytosol.
The release of cytochrome c is a pivotal event in apoptosis where cytochrome c moves from the mitochondria to the cytosol, initiating a chain reaction that leads to programmed cell death.

On the one hand, cytochrome c can promote cancer cell survival and proliferation by regulating the activity of various signaling pathways, such as the PI3K/AKT pathway. This can lead to increased cell growth and resistance to apoptosis, which are hallmarks of cancer.
On the other hand, cytochrome c can also induce apoptosis in cancer cells by interacting with other proteins, such as Apaf-1 and caspase-9. This can lead to the activation of the intrinsic apoptotic pathway, which can result in the death of cancer cells.
Overexpressed in Breast, Lung, Colon, and Prostrate.
Underexpressed in Ovarian, and Pancreatic.


Scientific Papers found: Click to Expand⟱
1762- MF,  Fe,    Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane
- in-vitro, RCC, NA
Dose∅, low frequencies (∼20 Hz) and in weak magnetic fields (∼30 mT)
Apoptosis↑, triggering of the apoptosis of these cancer cells was demonstrated with NiFe vortex particles and statistically characterized by flow-cytometry studies
Casp↑,
tumCV↓, In conclusion, a decrease of ~70% in viable cells was observed only six hours after the magneto-mechanical stimulus treatment
Casp3↑, microdisk vibrations initiated the intracellular cascade that leads to effector caspase 3/7 activation.
Casp7↑,
Ca+2↑, mechanotransduction leads to an increase of the intracellular Ca 2+ ions which serve as downstream signaling elements that propagate and amplify the apoptosis
Cyt‑c↑, The targets of such a signaling pathway include the cytochrome C release

520- MF,    Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3β signaling pathway
- in-vitro, Nor, NA
*MPT↑, MPT induced by MF exposure was mediated through the ROS/GSK-3β signaling pathway.
*Cyt‑c↑, induced Cyt-c release
*ROS↑, cells exposed to the MF showed increased intracellular reactive oxidative species (ROS) levels and glycogen synthase kinase-3β (GSK-3β) dephosphorylation at 9 serine residue (Ser(9))
*p‑GSK‐3β↑,
*eff↓, attenuated by ROS scavenger (N-acetyl-L-cysteine, NAC) or GSK-3β inhibitor
*MMP∅, no significant effect on mitochondrial membrane potential (ΔΨm)
*BAX↓, Bax declined around 15% which was statistically significant while the total level of Bcl-2 reminded unchanged in cells
*Bcl-2∅,

2241- MF,    Pulsed electromagnetic therapy in cancer treatment: Progress and outlook
- Review, Var, NA
other↝, PEMFs act on the cell, it will firstly change the cell membrane transport capacity, osmotic potential and ionic valves
p‑ERK↝, Also, it will cause changes in mitochondrial protein profile, decrease mitochondrial phosphor-ERK (extracellular-signal-regulated kinase), p53, and cytochrome c, and activate OxPhos.
P53↝,
Cyt‑c↝,
OXPHOS↑,
Apoptosis↑, PEMFs decreases cellular stress factors, increase energy demand, this series of reactions will eventually lead to apoptosis.
ROS↑, The introduction of PEFs and PEMFs can improve the penetration efficiency of ROS, not only reduce the concentration of drugs, but also reduce the irradiation dose of CAP, w

2255- MF,    Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative Stress
- in-vitro, Nor, SkMC
*HSP70/HSPA5↑, HSP70), which can promote muscle recovery, inhibits apoptosis and decreases inflammation in skeletal muscle, together with thioredoxin, paraoxonase, and superoxide dismutase (SOD2), which can also promote skeletal muscle regeneration following injury
*Apoptosis↓,
*Inflam↓,
*Trx↓,
*PONs↓, Paraoxonase 2 (PON2, Paraoxonase 3 (PON3) (+19% vs. controls)
*SOD2↓,
*TumCG↑, PEMF treatment enhanced muscle cell proliferation by approximately 20% both in cells grown in complete medium
*Diff↑, suggest the potential role of PEMF in the induction of muscle differentiation
*HIF2a↑, hypoxia-inducible transcription factor 2a (HIF-2a) (+40% vs. controls),
*Cyt‑c↑, Cytochrome c (+39% vs. controls)
P21↑, p21/CIP1 (+27% vs. controls)

3493- MFrot,  MF,    Mechanical nanosurgery of chemoresistant glioblastoma using magnetically controlled carbon nanotubes
- in-vivo, GBM, NA
TumCD↑, We show that GBM cells internalize mCNTs, the mobilization of which by rotating magnetic field results in cell death.
MMP↓, We detected the dissipation of mitochondria membrane potential of GBM cells upon mCNT + magnetic treatment
Cyt‑c↑, When mitochondria integrity is compromised, mitochondrial cytochrome C is released into the cytosol to initiate caspases-dependent apoptosis
Apoptosis↑,
OS↑, Consistent with tumor burden reduction, mCNT + magnetic field treatment significantly extended the survival of GBM-bearing mice (median survival: 22.2 ± 4.0 versus 26.8 ± 6.0 days, P = 0.0072; Fig. 3F).
DNAdam↑, Tumor cells in the treatment group also exhibited increased DNA damage

2259- MFrot,  MF,    Method and apparatus for oncomagnetic treatment
- in-vitro, GBM, NA
MMP↓, Oncomagnetic patent Fig 2
Bcl-2↓,
BAX↑,
Bak↑,
Cyt‑c↑,
Casp3↑, caspase staining rises progressively until after 30 min most of the cells fluoresce positive for caspase, revealing activation of this enzyme
Casp9↑,
DNAdam↑,
ROS↑, applying the oscillating magnetic field to the tissue increases the production of reactive oxygen species (ROS )
lactateProd↑,
Apoptosis↑,
MPT↑, opening of the mitochondrial membrane permeability transition pore
*selectivity↑, repetitive magnetic stimulation has shown decreased apoptosis in non -cancerous cells .
eff↑, oncomagnetic therapy may be performed in conjunction with other forms of therapy such as with chemotherapy, other forms of radiative therapy, with drugs and prescriptions, etc
MMP↓, OMF which in turn produces rapidly fluctuating or sustained depolarizations of the mitochondrial membrane potential (MMP) in the tissue .
selectivity↑, Because normal cells have a larger amount of mitochondria, have lower demand for ATP, and are not under stress, disruption of electron flow and small amount of ROS formation and MMP depolarization does not trigger apoptosis
TCA?, decrease in Krebs cycle metabolites
H2O2↑, increase in peroxide levels in GBM cells following stimulation by the system 100 using a rotating magnet
eff↑, combine the administration of BHB , or acetoacetate , or free fatty acid, or branched chain amino acid, or cryptochrome agonist , or MGMT inhibitor, or DNA alkylating agent, or DNA methylating agent, and OMF as a more effective treatment of cancer
*antiOx↑, upregulation of antioxidant mechanisms due to the application of OMFs further protects non -cancerous cells from any ROS -mediated apoptosis
H2O2↑, The experiments showed rapid increases in the levels of superoxide and H2O2 in GBM cells
eff↓, To test whether cell death is caused by the OMF - induced increase in ROS , a potent antioxidant Trolox was used to counteract it, while measuring the decrease in GBM cell count due to 4 h exposure to OMF.
GSH/GSSG↓, GSH/GSSG ratio almost exactly half that seen in control cells
*toxicity∅, No Cytotoxic Effect in Normal Cells
OS↑, OMF -Induced Prolongation of Survival in a Mouse Xenograft Model of GBM

184- MFrot,  MF,    Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer Cells
- in-vitro, GBM, GBM
ROS↑, sOMF
mitResp↓, Inhibit Mitochondrial Respiration
mtDam↑, Produce Loss of Mitochondrial Integrity
Dose↝, Repeated intermittent sOMF was applied for 2 hours at a specific frequency, in the 200-300 Hz frequency range, with on-off epochs of 250 or 500 ms duration.
MMP?, ROS generation has been shown to be driven, in part, by elevated mitochondrial membrane chemiosmotic potential (ΔΨ) and ubiquinol (QH2)
OCR↓, Immediately after cessation of field rotation we observe a loss of mitochondrial integrity (labeled LMI), with a very rapid increase in O2 consumption
mt-H2O2↑, We have previously demonstrated that sOMF treatment of cells generates superoxide/hydrogen peroxide in the mitochondrial matrix
eff↓, we repeated the same experiment in the presence of Trolox, which protects thiols from ROS oxidation (47). sOMF treatment of RLM in State 3u pre-treated with Trolox (15 μM), show minimal inhibition,
SDH↓, SDH Inhibition by sOMF in State 3u RLM Is Caused by ROS Generation
Thiols↓, suggest that thiol oxidation in SDH may result from sOMF.
GSH↓, Glutathione in the mitochondrial matrix can provide some protection from ROS, but after solubilizing the mitochondria, this protection is lost and the SDH becomes more sensitive to sOMF.
TumCD↑, sOMF is highly effective at killing non-dividing GBM cell cultures,
Casp3↑, caspase-3 activation 1 h after sOMF
Casp7↑, rapid activation of caspase-3/7
MPT↑, OMF-treated cell that causes near simultaneous MPT, release of cytochrome c and other apoptosis-inducing factors, resulting in caspase-3/7 activation in these GBM cells.
Cyt‑c↑,
selectivity↑, differential sensitivity to sOMF of cancer cells over ‘normal’ cells becomes apparent. rapid increase in the reactive oxygen species (ROS) in the mitochondria to cytotoxic levels only in cancer cells, and not in normal human cortical neurons
GSH/GSSG↓, increasing GSSG/GSH ratio


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
Apoptosis↑,4,   Bak↑,1,   BAX↑,1,   Bcl-2↓,1,   Ca+2↑,1,   Casp↑,1,   Casp3↑,3,   Casp7↑,2,   Casp9↑,1,   Cyt‑c↑,4,   Cyt‑c↝,1,   DNAdam↑,2,   Dose↝,1,   Dose∅,1,   eff↓,2,   eff↑,2,   p‑ERK↝,1,   GSH↓,1,   GSH/GSSG↓,2,   H2O2↑,2,   mt-H2O2↑,1,   lactateProd↑,1,   mitResp↓,1,   MMP?,1,   MMP↓,3,   MPT↑,2,   mtDam↑,1,   OCR↓,1,   OS↑,2,   other↝,1,   OXPHOS↑,1,   P21↑,1,   P53↝,1,   ROS↑,3,   SDH↓,1,   selectivity↑,2,   TCA?,1,   Thiols↓,1,   TumCD↑,2,   tumCV↓,1,  
Total Targets: 40

Results for Effect on Normal Cells:
antiOx↑,1,   Apoptosis↓,1,   BAX↓,1,   Bcl-2∅,1,   Cyt‑c↑,2,   Diff↑,1,   eff↓,1,   p‑GSK‐3β↑,1,   HIF2a↑,1,   HSP70/HSPA5↑,1,   Inflam↓,1,   MMP∅,1,   MPT↑,1,   PONs↓,1,   ROS↑,1,   selectivity↑,1,   SOD2↓,1,   toxicity∅,1,   Trx↓,1,   TumCG↑,1,  
Total Targets: 20

Scientific Paper Hit Count for: Cyt‑c, cyt-c Release into Cytosol
7 Magnetic Fields
3 Magnetic Field Rotating
1 Iron
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:172  Target#:77  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page