condition found tbRes List
MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


HK2, Hexokinase 2: Click to Expand ⟱
Source:
Type: enzyme
HK2 (Hexokinase 2) is an enzyme that plays a crucial role in glycolysis, the process by which cells convert glucose into energy. HK2 is a key regulatory enzyme in the glycolytic pathway, and it is primarily expressed in various tissues, including muscle, brain, and cancer cells.
HK2 has been shown to be overexpressed in many types of tumors, including breast, lung, and colon cancer. This overexpression may contribute to the development and progression of cancer by promoting glycolysis and energy production in cancer cells.
HK2 is a key regulatory enzyme in the glycolytic pathway.
HK2 plays a role in the regulation of glucose metabolism in diabetes.
HK2 is involved in the regulation of cell proliferation, apoptosis, and autophagy.

HK2 Inhibitors:
-2DG
-Curcumin
-Resveratrol
-EGCG
-Berberine
-Methyl Jasmonate (MJ)
-Honokiol


Scientific Papers found: Click to Expand⟱
2249- MF,    Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study
- in-vitro, Nor, L929
*TumCMig↑, PEMFs with specific parameter (4mT, 80 Hz) promoted cell migration and viability.
*tumCV↑,
*Glycolysis↑, PEMFs-exposed L929 cells was highly glycolytic for energy generation
*ROS↓, PEMFs enhanced intracellular acidification and maintained low level of intracellular ROS in L929 cells.
*mitResp↓, shifting from mitochondrial respiration to glycolysis
*other↝, Furthermore, the analysis of ECAR/ OCR basal ratio demonstrated a tendency toward to glycolytic phenotype in L929 cells under PEMF exposure, compared to control group
*OXPHOS↓, PEMFs promoted the transformation of energy metabolism pattern from oxidative phosphorylation to aerobic glycolysis
*pH↑, result of pH detection by flow cytometer indicated the pH level in L929 cells was significantly increased in the PEMFs group compared to the control group
*antiOx↑, PEMFs upregulated the expression of antioxidant or glycolysis related genes
*PFKM↑, Pfkm, Pfkl, Pfkp, Pkm2, Hk2, Glut1, were also significantly up-regulated in the PEMFs group
*PFKL↑,
*PKM2↑,
*HK2↑,
*GLUT1↑,
*GPx1↑, GPX1, GPX4 and Sod 1 expression were significantly higher in the PEMFs group compared to the control group
*GPx4↑,
*SOD1↑,

525- MF,    Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis
- in-vitro, Nor, HUVECs
*angioG↑, PEMFs promoted a shift in the energy metabolism pattern of HUVECs from oxidative phosphorylation to aerobic glycolysis.
*GPx1↑, 4x
*GPx4↑, 2.2x
*SOD↑, SOD1/2 3.5x
*PFKM↑, 3x
*PFKL↑, 2.5x
*PKM2↑, 2.6x : activation of PKM2 enhanced angiogenesis in endothelial cells (ECs) by modulating glycolysis, mitochondrial fission, and fusion
*PFKP↑, 2.8x
*HK2↑, 4x
*GLUT1↑, 1.5x
*GLUT4↑, 1.6x
*ROS↓, reminder: normal HUVECs cells
*MMP↝, no damage, (normal cells)
*Glycolysis↑, (PFKL, PFKLM, PFKP, PKM2, and HK2) encoding the three key regulatory enzymes of glycolysis, hexokinase, phosphofructokinase, and pyruvate kinase, sharply increased when HUVECs were exposed to PEMFs
*OXPHOS↓, PEMFs promoted a shift in the energy metabolism pattern of HUVECs from oxidative phosphorylation to aerobic glycolysis


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:

Total Targets: 0

Results for Effect on Normal Cells:
angioG↑,1,   antiOx↑,1,   GLUT1↑,2,   GLUT4↑,1,   Glycolysis↑,2,   GPx1↑,2,   GPx4↑,2,   HK2↑,2,   mitResp↓,1,   MMP↝,1,   other↝,1,   OXPHOS↓,2,   PFKL↑,2,   PFKM↑,2,   PFKP↑,1,   pH↑,1,   PKM2↑,2,   ROS↓,2,   SOD↑,1,   SOD1↑,1,   TumCMig↑,1,   tumCV↑,1,  
Total Targets: 22

Scientific Paper Hit Count for: HK2, Hexokinase 2
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:172  Target#:773  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page