condition found tbRes List
MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ECAR, Extracellular Acidification Rate: Click to Expand ⟱
Source:
Type:
ECAR (Extracellular Acidification Rate) is a measure of the rate at which cells release acidic byproducts, such as lactic acid, into the extracellular environment. In the context of cancer, ECAR is often used as a proxy for glycolytic activity, as cancer cells often exhibit increased glycolysis, even in the presence of oxygen.

Studies have shown that cancer cells often have a higher ECAR compared to normal cells, indicating that they are producing more acidic byproducts. This is thought to be due to the fact that cancer cells often rely more heavily on glycolysis for energy production, even in the presence of oxygen.
-ECAR reflects the glycolysis activity



Scientific Papers found: Click to Expand⟱
2260- MF,    Alternative magnetic field exposure suppresses tumor growth via metabolic reprogramming
- in-vitro, GBM, U87MG - in-vitro, GBM, LN229 - in-vivo, NA, NA
TumCP↓, proliferation of human glioblastoma multiforme (GBM) cells (U87 and LN229) was inhibited upon exposure to AMF within a specific narrow frequency range, including around 227 kHz.
TumCG↓, daily exposure to AMF for 30 min over 21 days significantly suppressed tumor growth and prolonged overall survival
OS↑,
ROS↑, This effect was associated with heightened reactive oxygen species (ROS) production and increased manganese superoxide dismutase (MnSOD) expression.
SOD2↑,
eff↓, anti-cancer efficacy of AMF was diminished by either a mitochondrial complex IV inhibitor or a ROS scavenger.
ECAR↓, decrease in the extracellular acidification rate (ECAR) and an increase in the oxygen consumption rate (OCR).
OCR↑,
selectivity↑, This suggests that AMF-induced metabolic reprogramming occurs in GBM cells but not in normal cells. Furthermore, in cancer cells, AMF decreased ECAR and increased OCR, while there were no changes in normal cells.
*toxicity∅, did not affect non-cancerous human cells [normal human astrocyte (NHA), human cardiac fibroblast (HCF), human umbilical vein endothelial cells (HUVEC)].
TumVol↓, The results showed a significant treatment effect, as assessed by tumor volume, after conducting AMF treatment five times a week for 2 weeks
PGC-1α↑, Corresponding to the rise in ROS, there was also a time-dependent increase in PGC1α protein expression post-AMF exposure
OXPHOS↑, enhancing mitochondrial oxidative phosphorylation (OXPHOS), leading to increased ROS production
Glycolysis↓, metabolic mode of cancer cells to shift from glycolysis, characteristic of cancer cells, toward OXPHOS, which is more typical of normal cells.
PKM2↓, We extracted proteins that changed commonly in U87 and LN229 cells. Among the individual proteins related to metabolism, pyruvate kinase M2 (PKM2) was found to be inhibited in both.

2245- MF,    Quantum based effects of therapeutic nuclear magnetic resonance persistently reduce glycolysis
- in-vitro, Nor, NIH-3T3
Warburg↓, tNMR might have the potential to counteract the Warburg effect known from many cancer cells which are prone to glycolysis even under aerobic conditions.
Hif1a↓, combined treatment of tNMR and hypoxia (tNMR hypoxia) led to significantly altered HIF-1α protein levels, namely a further overall reduction in protein amounts
*Hif1a∅, Under normoxic conditions we did not find significant differences in Hif-1α mRNA and protein expression
Glycolysis↓, hypoxic tNMR treatment, driving cellular metabolism to a reduced glycolysis while mitochondrial respiration is kept constant even during reoxygenation.
*lactateProd↓, tNMR reduces lactate production and decreases cellular ADP levels under normoxic conditions
*ADP:ATP↓,
Pyruv↓, Intracellular pyruvate, which was as well decreased in hypoxic control cells, appeared to be further decreased after tNMR under hypoxia
ADP:ATP↓, tNMR under hypoxia further decreased the hypoxia induced decrease of the intracellular ADP/ATP ratio
*PPP↓, pentose phosphate pathway (PPP) is throttled after tNMR treatment, while cell proliferation is enhanced
*mt-ROS↑, tNMR under hypoxia increases mitochondrial and extracellular, but reduces cytosolic ROS
*ROS↓, but reduces cytosolic ROS
RPM↑, Because EMFs are known to affect ROS levels via the radical pair mechanism (RPM)
*ECAR↓, tNMR under normoxic conditions reduces the extracellular acidification rate (ECAR)


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
ADP:ATP↓,1,   ECAR↓,1,   eff↓,1,   Glycolysis↓,2,   Hif1a↓,1,   OCR↑,1,   OS↑,1,   OXPHOS↑,1,   PGC-1α↑,1,   PKM2↓,1,   Pyruv↓,1,   ROS↑,1,   RPM↑,1,   selectivity↑,1,   SOD2↑,1,   TumCG↓,1,   TumCP↓,1,   TumVol↓,1,   Warburg↓,1,  
Total Targets: 19

Results for Effect on Normal Cells:
ADP:ATP↓,1,   ECAR↓,1,   Hif1a∅,1,   lactateProd↓,1,   PPP↓,1,   ROS↓,1,   mt-ROS↑,1,   toxicity∅,1,  
Total Targets: 8

Scientific Paper Hit Count for: ECAR, Extracellular Acidification Rate
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:172  Target#:847  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page