condition found tbRes List
MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


β-catenin/ZEB1, β-catenin/ZEB1: Click to Expand ⟱
Source: HalifaxProj (inactivate)
Type:
β-catenin and ZEB1 are two important proteins that play significant roles in cancer biology, particularly in the processes of cell adhesion, epithelial-mesenchymal transition (EMT), and tumor progression.
β-catenin is a key component of the Wnt signaling pathway, which is crucial for cell proliferation, differentiation, and survival. It also plays a role in cell-cell adhesion by linking cadherins to the actin cytoskeleton.
Role in Cancer: ZEB1 is often upregulated in cancer and is associated with increased invasiveness and metastasis. It can repress epithelial markers (like E-cadherin) and promote mesenchymal markers (like N-cadherin and vimentin), facilitating the transition to a more aggressive cancer phenotype.

(MMP)-2 and MMP-9, which are the down-stream targets of β-catenin and play a crucial role in cancer cell metastasis.


Scientific Papers found: Click to Expand⟱
2240- MF,    Pulsed electromagnetic field induces Ca2+-dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca2+/Wnt-β-catenin signaling pathway
- in-vitro, Nor, C3H10T1/2
*Ca+2↑, intracellular [Ca2+]i in C3H10T1/2 cells can be upregulated upon exposure to PEMF
*Diff↑, PEMF-induced C3H10T1/2 cell differentiation was Ca2+-dependent.
*BMD↑, pro-osteogenic effect of PEMF on Ca2+-dependent osteoblast differentiation
*Wnt↑, PEMF promoted the gene expression and protein synthesis of the Wnt/β-catenin pathway.
*β-catenin/ZEB1↑, PEMF activates the Wnt/b-catenin signaling pathway in C3H10T1/2 cells
*eff↝, These data indicated that increased intranuclear [Ca2+]i resulted in altered electrical activity in the nucleus.

3478- MF,    One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study
- Trial, BC, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, C2C12
TumCP↓, Female sera from the magnetic therapy group (n = 12) reduced breast cancer cell proliferation (16.1%), migration (11.8%) and invasion (28.2%) and reduced the levels of key EMT markers relative to the control sera
TumCMig↓,
TumCI↓,
*toxicity∅, The provision of week 5 or week 8 PEMF sera to MCF10A cells did not alter their viability, being comparable to that observed with the control sera (
TGF-β↓, The week 8 PEMF sera resulted in the significant downregulation of (A) TGFβR2, (B) TWIST, (C) SNAI1, (D) SNAI2 (Slug), (E) β-catenin and (F) Vimentin protein expressions, when compared to week 8 control sera
Twist↓,
Slug↓,
β-catenin/ZEB1↓,
Vim↓,
p‑SMAD2↓, Week 5 PEMF sera primarily reduced the phosphorylation of SMAD 2/3 as well as the expression of TWIST protein expression.
p‑SMAD3↓,
angioG↓, Week 8 PEMF-plasma showed significant reductions in angiogenic biomarkers, including Angiopoietin-2, BMP-9, Endoglin, PLGF, VEGF-A, and VEGF-D
VEGF↓,
selectivity↑, PEMF sera did not adversely alter the growth of non-malignant cells such as MCF10A (breast epithelial) and C2C12 (myogenic).
LIF↑, Similarly, LIF (leukemia inhibitory factor) was upregulated one week after the final PEMF treatment.

3477- MF,    Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis
- Review, NA, NA
*Ca+2↑, When cells are subjected to external mechanical stimulation, voltage-gated ion channels in the cell membrane open and intracellular calcium ion concentration rises
*VEGF↑, BMSCs EMF combined with VEGF promote osteogenesis and angiogenesis
*angioG↑,
Ca+2↑, 1 Hz/100 mT MC4-L2 breast cancer cells EMF lead to calcium ion overload and ROS increased, resulting in necroptosis
ROS↑,
Necroptosis↑,
TumCCA↑, 50 Hz/4.5 mT 786-O cells ELF-EMF induce G0/G1 arrest and apoptosis in cells lines
Apoptosis↑,
*ATP↑, causing the ATP or ADP increases, and the purinergic signal can upregulate the expression of P2Y1 receptors
*FAK↑, Our research team [53] found that ELE-EMF can induce calcium oscillations in bone marrow stem cells, up-regulated calcium ion activates FAK pathway, cytoskeleton enhancement, and migration ability of stem cells in vitro is enhanced.
*Wnt↑, ability of EMF to activate the Wnt10b/β-catenin signaling pathway to promote osteogenic differentiation of cells depends on the functional integrity of primary cilia in osteoblasts.
*β-catenin/ZEB1↑,
*ROS↑, we hypothesize that the electromagnetic field-mediated calcium ion oscillations, which causes a small amount of ROS production in mitochondria, regulates the chondrogenic differentiation of cells, but further studies are needed
p38↑, RF-EMF was able to suppress tumor stem cells by activating the CAMKII/p38 MAPK signaling pathway after inducing calcium ion oscillation and by inhibiting the β-catenin/HMGA2 signaling pathway
MAPK↑,
β-catenin/ZEB1↓,
CSCs↓, Interestingly, the effect of electromagnetic fields is not limited to tumor stem cells, but also inhibits the proliferation and development of tumor cells
TumCP↓,
ROS↑, breast cancer cell lines exposed to ELE-EMF for 24 h showed a significant increase in intracellular ROS expression and an increased sensitivity to further radiotherapy
RadioS↑,
Ca+2↑, after exposure to higher intensity EMF radiation, showed a significant increase in intracellular calcium ion and reactive oxygen species, which eventually led to necroptosis
eff↓, while this programmed necrosis of tumor cells was able to be antagonized by the calcium blocker verapamil or the free radical scavenger n -acetylcysteine
NO↑, EMF can regulate multiple ions in cells, and calcium ion play a key role [92, 130], calcium ion acts as a second messenger that can activate downstream molecules such as NO, ROS

530- MF,    Low frequency sinusoidal electromagnetic fields promote the osteogenic differentiation of rat bone marrow mesenchymal stem cells by modulating miR-34b-5p/STAC2
- in-vivo, Nor, NA
*miR-34b-5p↓, expression of miR-34b-5p decreased under SEMF stimulation,
*ALP↑, significant upregulation in the relative expression levels of osteogenic markers (ALP, RUNX2, BMP2, OCN, and OPN)
*RUNX2↑,
*BMP2↑,
*OCN↑,
*OPN↑,
*β-catenin/ZEB1↑, protein expression levels of osteogenic makers, including Active-β-catenin, RUNX2, and ALP, were elevated upon SEMFs exposure at 0.4 mT, 0.7 mT, and 1 mT
*STAC2↑, subsequently increasing STAC2 level.
*Diff↑, electromagnetic fields promote the osteogenic differentiation
*BMD↑, low-frequency SEMFs promote osteogenesis


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
angioG↓,1,   Apoptosis↑,1,   Ca+2↑,2,   CSCs↓,1,   eff↓,1,   LIF↑,1,   MAPK↑,1,   Necroptosis↑,1,   NO↑,1,   p38↑,1,   RadioS↑,1,   ROS↑,2,   selectivity↑,1,   Slug↓,1,   p‑SMAD2↓,1,   p‑SMAD3↓,1,   TGF-β↓,1,   TumCCA↑,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,2,   Twist↓,1,   VEGF↓,1,   Vim↓,1,   β-catenin/ZEB1↓,2,  
Total Targets: 25

Results for Effect on Normal Cells:
ALP↑,1,   angioG↑,1,   ATP↑,1,   BMD↑,2,   BMP2↑,1,   Ca+2↑,2,   Diff↑,2,   eff↝,1,   FAK↑,1,   miR-34b-5p↓,1,   OCN↑,1,   OPN↑,1,   ROS↑,1,   RUNX2↑,1,   STAC2↑,1,   toxicity∅,1,   VEGF↑,1,   Wnt↑,2,   β-catenin/ZEB1↑,3,  
Total Targets: 19

Scientific Paper Hit Count for: β-catenin/ZEB1, β-catenin/ZEB1
4 Magnetic Fields
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:172  Target#:342  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page