Database Query Results : Magnetic Fields, , TumCMig

MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCMig, Tumor cell migration: Click to Expand ⟱
Source:
Type:
Tumor cell migration is a critical process in cancer progression and metastasis, which is the spread of cancer cells from the primary tumor to distant sites in the body.


Scientific Papers found: Click to Expand⟱
524- MF,    Inhibition of Angiogenesis Mediated by Extremely Low-Frequency Magnetic Fields (ELF-MFs)
- vitro+vivo, PC, MS-1 - vitro+vivo, PC, HUVECs
other↓, reduction of hemangioma size, of blood-filled spaces, and in hemorrhage.
TumCP↓,
TumCMig↓,
VEGFR2↓,
TumVol↓, 20mm compared to 32mm
HSP70/HSPA5↓, HSP70 and HSP90 expression after 72 h of exposure to MF in MS-1 cells seemed markedly reduced.
HSP90↓,
TumCCA↑, (2 mT) induced cell cycle arrest but not apoptosis. “transient” arrest of MF-treated cells in G2/M phase
angioG↓, in vitro

3470- MF,    Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8+ T cell dysfunction and suppress cervical cancer progression
- in-vitro, Cerv, HeLa
TNF-α↑, PEMF treatment significantly inhibited IL-37 expression (p < 0.05), promoted inflammatory factor release (TNF-α and IL-6), and activated oxidative stress, leading to increased CC cell apoptosis
IL6↑,
ROS↑,
Apoptosis↑,
TumCP↓, Co-culture of Hela cells with CD8+ T cells under PEMF treatment showed reduced proliferation (by 40%), migration, and invasion (p < 0.05).
TumCMig↓,
TumCI↓,

2249- MF,    Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study
- in-vitro, Nor, L929
*TumCMig↑, PEMFs with specific parameter (4mT, 80 Hz) promoted cell migration and viability.
*tumCV↑,
*Glycolysis↑, PEMFs-exposed L929 cells was highly glycolytic for energy generation
*ROS↓, PEMFs enhanced intracellular acidification and maintained low level of intracellular ROS in L929 cells.
*mitResp↓, shifting from mitochondrial respiration to glycolysis
*other↝, Furthermore, the analysis of ECAR/ OCR basal ratio demonstrated a tendency toward to glycolytic phenotype in L929 cells under PEMF exposure, compared to control group
*OXPHOS↓, PEMFs promoted the transformation of energy metabolism pattern from oxidative phosphorylation to aerobic glycolysis
*pH↑, result of pH detection by flow cytometer indicated the pH level in L929 cells was significantly increased in the PEMFs group compared to the control group
*antiOx↑, PEMFs upregulated the expression of antioxidant or glycolysis related genes
*PFKM↑, Pfkm, Pfkl, Pfkp, Pkm2, Hk2, Glut1, were also significantly up-regulated in the PEMFs group
*PFKL↑,
*PKM2↑,
*HK2↑,
*GLUT1↑,
*GPx1↑, GPX1, GPX4 and Sod 1 expression were significantly higher in the PEMFs group compared to the control group
*GPx4↑,
*SOD1↑,

3478- MF,    One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study
- Trial, BC, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, C2C12
TumCP↓, Female sera from the magnetic therapy group (n = 12) reduced breast cancer cell proliferation (16.1%), migration (11.8%) and invasion (28.2%) and reduced the levels of key EMT markers relative to the control sera
TumCMig↓,
TumCI↓,
*toxicity∅, The provision of week 5 or week 8 PEMF sera to MCF10A cells did not alter their viability, being comparable to that observed with the control sera (
TGF-β↓, The week 8 PEMF sera resulted in the significant downregulation of (A) TGFβR2, (B) TWIST, (C) SNAI1, (D) SNAI2 (Slug), (E) β-catenin and (F) Vimentin protein expressions, when compared to week 8 control sera
Twist↓,
Slug↓,
β-catenin/ZEB1↓,
Vim↓,
p‑SMAD2↓, Week 5 PEMF sera primarily reduced the phosphorylation of SMAD 2/3 as well as the expression of TWIST protein expression.
p‑SMAD3↓,
angioG↓, Week 8 PEMF-plasma showed significant reductions in angiogenic biomarkers, including Angiopoietin-2, BMP-9, Endoglin, PLGF, VEGF-A, and VEGF-D
VEGF↓,
selectivity↑, PEMF sera did not adversely alter the growth of non-malignant cells such as MCF10A (breast epithelial) and C2C12 (myogenic).
LIF↑, Similarly, LIF (leukemia inhibitory factor) was upregulated one week after the final PEMF treatment.

3500- MF,    Moderate Static Magnet Fields Suppress Ovarian Cancer Metastasis via ROS-Mediated Oxidative Stress
- in-vitro, Ovarian, SKOV3
ROS↑, SMFs increased the oxidative stress level and reduced the stemness of ovarian cancer cells.
CSCs↓,
CD44↓, xpressions of stemness-related genes were significantly decreased, including hyaluronan receptor (CD44), SRY-box transcription factor 2 (Sox2), and cell myc proto-oncogene protein (C-myc).
SOX2↓,
cMyc↓,
TumMeta↓, High Levels of Cellular ROS Inhibit Ovarian Cancer Cell Migration and Invasion
TumCI↓,
TumCMig↓, Moderate SMFs Increase Ovarian Cancer Cell ROS Levels and Inhibit Cell Migration
CD133↓, stemness-related genes were significantly downregulated by SMF treatment, including Sox2, Nanog, C-myc, CD44, and CD133
Nanog↓,

205- MFrot,  MF,    Intermittent F-actin Perturbations by Magnetic Fields Inhibit Breast Cancer Metastasis
- vitro+vivo, BC, MDA-MB-231
OS↑, 31-46% prolonged survival
F-actin↓, decrease F-actin formation in vitro and in vivo
TumCI↓,
TumCMig↓, >4.5hrs
Rho↓,
selectivity↑, F-actin in noncancerous breast cells is much less sensitive than that in breast cancer cells, which indicate that the normal cells in our human bodies are less likely to be agitated by these magnetic fields.

516- MFrot,  immuno,  MF,    Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growth
- vitro+vivo, GBM, U87MG
TumCP↓,
Apoptosis↑,
TumCMig↓,
ROS↑, treatment with OM-100 led to an increase in intracellular ROS levels
PD-L1↑, upregulating PD-L1 expression, thereby enhancing the efficacy of anti-PD-1 immunotherapy
TumVol↓, in mice
eff↑, enhance the efficacy of anti‑PD‑1 immunotherapy in vivo
*toxicity∅, OM-100 did not result in noteworthy changes in the blood routine parameters (Gran, HCT, HGB, Lymph, MCH, MCV, PLT, RBC, MPV, and WBC) and biochemical indicators (ALT, AST, T-BIL, CREA, TG, TC, HDL-c, and LDL-c) in normal mice
eff↑, Particularly, there was a more pronounced response to anti-PD-1 therapy in patients whose tumors expressed PD-L1 3
*toxicity∅, OM-100 treatment in healthy mice showed no adverse effects, indicating its safety for normal tissues.
Dose↝, 24-day treatment with a magnetic field intensity of 1.066 mT and a frequency of 100 kHz (figure shows motor driven 120Hz, 7200rpm pulsed
tumCV↓, anti-tumor efficacy of OM-100 treatment, which by impairing cell viability, increasing apoptosis, inhibiting cell migration, and invasion capabilities, as well as promoting oxidative stress.
TumCI↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
angioG↓,2,   Apoptosis↑,2,   CD133↓,1,   CD44↓,1,   cMyc↓,1,   CSCs↓,1,   Dose↝,1,   eff↑,2,   F-actin↓,1,   HSP70/HSPA5↓,1,   HSP90↓,1,   IL6↑,1,   LIF↑,1,   Nanog↓,1,   OS↑,1,   other↓,1,   PD-L1↑,1,   Rho↓,1,   ROS↑,3,   selectivity↑,2,   Slug↓,1,   p‑SMAD2↓,1,   p‑SMAD3↓,1,   SOX2↓,1,   TGF-β↓,1,   TNF-α↑,1,   TumCCA↑,1,   TumCI↓,5,   TumCMig↓,6,   TumCP↓,4,   tumCV↓,1,   TumMeta↓,1,   TumVol↓,2,   Twist↓,1,   VEGF↓,1,   VEGFR2↓,1,   Vim↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 38

Results for Effect on Normal Cells:
antiOx↑,1,   GLUT1↑,1,   Glycolysis↑,1,   GPx1↑,1,   GPx4↑,1,   HK2↑,1,   mitResp↓,1,   other↝,1,   OXPHOS↓,1,   PFKL↑,1,   PFKM↑,1,   pH↑,1,   PKM2↑,1,   ROS↓,1,   SOD1↑,1,   toxicity∅,3,   TumCMig↑,1,   tumCV↑,1,  
Total Targets: 18

Scientific Paper Hit Count for: TumCMig, Tumor cell migration
7 Magnetic Fields
2 Magnetic Field Rotating
1 immunotherapy
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:172  Target#:326  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page