condition found tbRes List
MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCMig, Tumor cell migration: Click to Expand ⟱
Source:
Type:
Tumor cell migration is a critical process in cancer progression and metastasis, which is the spread of cancer cells from the primary tumor to distant sites in the body.


Scientific Papers found: Click to Expand⟱
2249- MF,    Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study
- in-vitro, Nor, L929
*TumCMig↑, PEMFs with specific parameter (4mT, 80 Hz) promoted cell migration and viability.
*tumCV↑,
*Glycolysis↑, PEMFs-exposed L929 cells was highly glycolytic for energy generation
*ROS↓, PEMFs enhanced intracellular acidification and maintained low level of intracellular ROS in L929 cells.
*mitResp↓, shifting from mitochondrial respiration to glycolysis
*other↝, Furthermore, the analysis of ECAR/ OCR basal ratio demonstrated a tendency toward to glycolytic phenotype in L929 cells under PEMF exposure, compared to control group
*OXPHOS↓, PEMFs promoted the transformation of energy metabolism pattern from oxidative phosphorylation to aerobic glycolysis
*pH↑, result of pH detection by flow cytometer indicated the pH level in L929 cells was significantly increased in the PEMFs group compared to the control group
*antiOx↑, PEMFs upregulated the expression of antioxidant or glycolysis related genes
*PFKM↑, Pfkm, Pfkl, Pfkp, Pkm2, Hk2, Glut1, were also significantly up-regulated in the PEMFs group
*PFKL↑,
*PKM2↑,
*HK2↑,
*GLUT1↑,
*GPx1↑, GPX1, GPX4 and Sod 1 expression were significantly higher in the PEMFs group compared to the control group
*GPx4↑,
*SOD1↑,

3478- MF,    One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study
- Trial, BC, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, C2C12
TumCP↓, Female sera from the magnetic therapy group (n = 12) reduced breast cancer cell proliferation (16.1%), migration (11.8%) and invasion (28.2%) and reduced the levels of key EMT markers relative to the control sera
TumCMig↓,
TumCI↓,
*toxicity∅, The provision of week 5 or week 8 PEMF sera to MCF10A cells did not alter their viability, being comparable to that observed with the control sera (
TGF-β↓, The week 8 PEMF sera resulted in the significant downregulation of (A) TGFβR2, (B) TWIST, (C) SNAI1, (D) SNAI2 (Slug), (E) β-catenin and (F) Vimentin protein expressions, when compared to week 8 control sera
Twist↓,
Slug↓,
β-catenin/ZEB1↓,
Vim↓,
p‑SMAD2↓, Week 5 PEMF sera primarily reduced the phosphorylation of SMAD 2/3 as well as the expression of TWIST protein expression.
p‑SMAD3↓,
angioG↓, Week 8 PEMF-plasma showed significant reductions in angiogenic biomarkers, including Angiopoietin-2, BMP-9, Endoglin, PLGF, VEGF-A, and VEGF-D
VEGF↓,
selectivity↑, PEMF sera did not adversely alter the growth of non-malignant cells such as MCF10A (breast epithelial) and C2C12 (myogenic).
LIF↑, Similarly, LIF (leukemia inhibitory factor) was upregulated one week after the final PEMF treatment.

3500- MF,    Moderate Static Magnet Fields Suppress Ovarian Cancer Metastasis via ROS-Mediated Oxidative Stress
- in-vitro, Ovarian, SKOV3
ROS↑, SMFs increased the oxidative stress level and reduced the stemness of ovarian cancer cells.
CSCs↓,
CD44↓, xpressions of stemness-related genes were significantly decreased, including hyaluronan receptor (CD44), SRY-box transcription factor 2 (Sox2), and cell myc proto-oncogene protein (C-myc).
SOX2↓,
cMyc↓,
TumMeta↓, High Levels of Cellular ROS Inhibit Ovarian Cancer Cell Migration and Invasion
TumCI↓,
TumCMig↓, Moderate SMFs Increase Ovarian Cancer Cell ROS Levels and Inhibit Cell Migration
CD133↓, stemness-related genes were significantly downregulated by SMF treatment, including Sox2, Nanog, C-myc, CD44, and CD133
Nanog↓,

3470- MF,    Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8+ T cell dysfunction and suppress cervical cancer progression
- in-vitro, Cerv, HeLa
TNF-α↑, PEMF treatment significantly inhibited IL-37 expression (p < 0.05), promoted inflammatory factor release (TNF-α and IL-6), and activated oxidative stress, leading to increased CC cell apoptosis
IL6↑,
ROS↑,
Apoptosis↑,
TumCP↓, Co-culture of Hela cells with CD8+ T cells under PEMF treatment showed reduced proliferation (by 40%), migration, and invasion (p < 0.05).
TumCMig↓,
TumCI↓,

524- MF,    Inhibition of Angiogenesis Mediated by Extremely Low-Frequency Magnetic Fields (ELF-MFs)
- vitro+vivo, PC, MS-1 - vitro+vivo, PC, HUVECs
other↓, reduction of hemangioma size, of blood-filled spaces, and in hemorrhage.
TumCP↓,
TumCMig↓,
VEGFR2↓,
TumVol↓, 20mm compared to 32mm
HSP70/HSPA5↓, HSP70 and HSP90 expression after 72 h of exposure to MF in MS-1 cells seemed markedly reduced.
HSP90↓,
TumCCA↑, (2 mT) induced cell cycle arrest but not apoptosis. “transient” arrest of MF-treated cells in G2/M phase
angioG↓, in vitro


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
angioG↓,2,   Apoptosis↑,1,   CD133↓,1,   CD44↓,1,   cMyc↓,1,   CSCs↓,1,   HSP70/HSPA5↓,1,   HSP90↓,1,   IL6↑,1,   LIF↑,1,   Nanog↓,1,   other↓,1,   ROS↑,2,   selectivity↑,1,   Slug↓,1,   p‑SMAD2↓,1,   p‑SMAD3↓,1,   SOX2↓,1,   TGF-β↓,1,   TNF-α↑,1,   TumCCA↑,1,   TumCI↓,3,   TumCMig↓,4,   TumCP↓,3,   TumMeta↓,1,   TumVol↓,1,   Twist↓,1,   VEGF↓,1,   VEGFR2↓,1,   Vim↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 31

Results for Effect on Normal Cells:
antiOx↑,1,   GLUT1↑,1,   Glycolysis↑,1,   GPx1↑,1,   GPx4↑,1,   HK2↑,1,   mitResp↓,1,   other↝,1,   OXPHOS↓,1,   PFKL↑,1,   PFKM↑,1,   pH↑,1,   PKM2↑,1,   ROS↓,1,   SOD1↑,1,   toxicity∅,1,   TumCMig↑,1,   tumCV↑,1,  
Total Targets: 18

Scientific Paper Hit Count for: TumCMig, Tumor cell migration
5 Magnetic Fields
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:172  Target#:326  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page