condition found
Features: Therapy |
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range. The main pathways affected are: Calcium Signaling: -influence the activity of voltage-gated calcium channels. Oxidative Stress and Reactive Oxygen Species (ROS) Pathways Heat Shock Proteins (HSPs) and Cellular Stress Responses Cell Proliferation and Growth Signaling: MAPK/ERK pathway. Gene Expression and Epigenetic Modifications: NF-κB Angiogenesis Pathways: VEGF (improving VEGF for normal cells) PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models Pathways: - most reports have ROS production increasing in cancer cells , while decreasing in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells), - cause Cell cycle arrest : TumCCA↑, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Protein expression of ATF, GRP78, and GADD153 which is a hall marker of ER stress. The endoplasmic reticulum (ER) stress signaling pathway plays a crucial role in maintaining cellular homeostasis and responding to various stressors, including those encountered in cancer. When cells experience stress, such as the accumulation of misfolded proteins, they activate a series of signaling pathways collectively known as the unfolded protein response (UPR). The UPR aims to restore normal function by enhancing the protein-folding capacity of the ER, degrading misfolded proteins, and, if the stress is unresolved, triggering apoptosis. The activation of ER stress pathways can contribute to resistance against chemotherapy and targeted therapies. Cancer cells may utilize the UPR to survive treatment-induced stress, making it challenging to achieve effective therapeutic outcomes. -ER stress-associated proteins include: phosphorylation of PERK, eIF2α, ATF4, CHOP and cleaved-caspase 12 |
2018- | CAP,  | MF,  |   | Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma |
- | Review, | HCC, | NA |
3459- | MF,  |   | EFFECT OF PULSED ELECTROMAGNETIC FIELDS ON ENDOPLASMIC RETICULUM STRESS |
- | in-vitro, | Cerv, | HeLa |
3458- | MF,  |   | Magnetic Control of Protein Expression via Magneto-mechanical Actuation of ND-PEGylated Iron Oxide Nanocubes for Cell Therapy |
- | in-vitro, | GBM, | NA |
3457- | MF,  |   | Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis |
- | Review, | Var, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:172 Target#:103 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid