condition found tbRes List
MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


OXPHOS, Oxidative phosphorylation: Click to Expand ⟱
Source:
Type:
Oxidative phosphorylation (or phosphorylation) is the fourth and final step in cellular respiration.
Alterations in phosphorylation pathways result in serious outcomes in cancer. Many signalling pathways including Tyrosine kinase, MAP kinase, Cadherin-catenin complex, Cyclin-dependent kinase etc. are major players of the cell cycle and deregulation in their phosphorylation-dephosphorylation cascade has been shown to be manifested in the form of various types of cancers.
Many tumors exhibit a well-known metabolic shift known as the Warburg effect, where glycolysis is favored over OxPhos even in the presence of oxygen. However, this is not universal.
Many cancers, including certain subpopulations like cancer stem cells, still rely on OXPHOS for energy production, biosynthesis, and survival.

– In several cancers, especially during metastasis or in tumors with high metabolic plasticity, OxPhos can remain active or even be upregulated to meet energy demands.

In some cancers, high OxPhos activity correlates with aggressive features, resistance to standard therapies, and poor outcomes, particularly when tumor cells exploit mitochondrial metabolism for survival and metastasis.

– Conversely, low OxPhos activity can be associated with a reliance on glycolysis, which is also linked with rapid tumor growth and certain adverse prognostic features.

Inhibiting oxidative phosphorylation is not a universal strategy against all cancers. Targeting OXPHOS can potentially disrupt the metabolic flexibility of cancer cells, leading to their death or making them more susceptible to other treatments.
Since normal cells also rely on OXPHOS, inhibitors must be carefully targeted to avoid significant toxicity to healthy tissues.
Not all tumors are the same. Some may be more glycolytic, while others depend more on mitochondrial metabolism. Therefore, metabolic profiling of tumors is crucial before adopting this strategy. Inhibiting OXPHOS is being explored in combination with other treatments (such as chemo- or immunotherapies) to improve efficacy and overcome resistance.

In cancer cells, metabolic reprogramming is a hallmark where cells often rely on glycolysis (known as the Warburg effect); however, many cancer types also depend on OXPHOS for energy production and survival. Targeting OXPHOS(using inhibitor) to increase the production of reactive oxygen species (ROS) can selectively induce oxidative stress and cell death in cancer cells.

-One side effect of increased OXPHOS is the production of reactive oxygen species (ROS).
-Many cancer cells therefore simultaneously upregulate antioxidant systems to mitigate the damaging effects of elevated ROS.
-Increase in oxidative phosphorylation can inhibit cancer growth.


Scientific Papers found: Click to Expand⟱
2242- MF,    Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair
- in-vitro, Nor, NA
*MMP↑, we show that application of a low intensity constant EM field source on osteogenic cells in vitro resulted in increased mitochondrial membrane potential and respiratory complex I activity and induced osteogenic differentiation.
*Diff↑,
*OXPHOS↑, effect was mediated via increased OxPhos activity
*BMD↑, EM field source enhanced fracture repair via improved biomechanical properties and increased callus bone mineralization
ATP∅, higher mitochondrial OxPhos activity leads to higher ATP production, increased cellular activity leads to increased ATP consumption.

2247- MF,    Effects of Pulsed Electromagnetic Field Treatment on Skeletal Muscle Tissue Recovery in a Rat Model of Collagenase-Induced Tendinopathy: Results from a Proteome Analysis
- in-vivo, Nor, NA
*Glycolysis↓, PEMF-treated animals exhibited decreased glycolysis and increased LDHB expression, enhancing NAD signaling and ATP production
*LDHB↑,
*NAD↑,
*ATP↑,
*antiOx↑, Antioxidant protein levels increased, controlling ROS production.
*ROS↑,
*YAP/TEAD↑, upregulation of YAP and PGC1alpha and increasing slow myosin isoforms, thus speeding up physiological recovery.
*PGC-1α↑,
*TCA↑, increased in PEMF-treated injured limbs
*FAO↑,
*OXPHOS↑, Oxidative phosphorylation was increased in the muscle of injured rats that underwent PEMF treatment

2249- MF,    Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study
- in-vitro, Nor, L929
*TumCMig↑, PEMFs with specific parameter (4mT, 80 Hz) promoted cell migration and viability.
*tumCV↑,
*Glycolysis↑, PEMFs-exposed L929 cells was highly glycolytic for energy generation
*ROS↓, PEMFs enhanced intracellular acidification and maintained low level of intracellular ROS in L929 cells.
*mitResp↓, shifting from mitochondrial respiration to glycolysis
*other↝, Furthermore, the analysis of ECAR/ OCR basal ratio demonstrated a tendency toward to glycolytic phenotype in L929 cells under PEMF exposure, compared to control group
*OXPHOS↓, PEMFs promoted the transformation of energy metabolism pattern from oxidative phosphorylation to aerobic glycolysis
*pH↑, result of pH detection by flow cytometer indicated the pH level in L929 cells was significantly increased in the PEMFs group compared to the control group
*antiOx↑, PEMFs upregulated the expression of antioxidant or glycolysis related genes
*PFKM↑, Pfkm, Pfkl, Pfkp, Pkm2, Hk2, Glut1, were also significantly up-regulated in the PEMFs group
*PFKL↑,
*PKM2↑,
*HK2↑,
*GLUT1↑,
*GPx1↑, GPX1, GPX4 and Sod 1 expression were significantly higher in the PEMFs group compared to the control group
*GPx4↑,
*SOD1↑,

2260- MF,    Alternative magnetic field exposure suppresses tumor growth via metabolic reprogramming
- in-vitro, GBM, U87MG - in-vitro, GBM, LN229 - in-vivo, NA, NA
TumCP↓, proliferation of human glioblastoma multiforme (GBM) cells (U87 and LN229) was inhibited upon exposure to AMF within a specific narrow frequency range, including around 227 kHz.
TumCG↓, daily exposure to AMF for 30 min over 21 days significantly suppressed tumor growth and prolonged overall survival
OS↑,
ROS↑, This effect was associated with heightened reactive oxygen species (ROS) production and increased manganese superoxide dismutase (MnSOD) expression.
SOD2↑,
eff↓, anti-cancer efficacy of AMF was diminished by either a mitochondrial complex IV inhibitor or a ROS scavenger.
ECAR↓, decrease in the extracellular acidification rate (ECAR) and an increase in the oxygen consumption rate (OCR).
OCR↑,
selectivity↑, This suggests that AMF-induced metabolic reprogramming occurs in GBM cells but not in normal cells. Furthermore, in cancer cells, AMF decreased ECAR and increased OCR, while there were no changes in normal cells.
*toxicity∅, did not affect non-cancerous human cells [normal human astrocyte (NHA), human cardiac fibroblast (HCF), human umbilical vein endothelial cells (HUVEC)].
TumVol↓, The results showed a significant treatment effect, as assessed by tumor volume, after conducting AMF treatment five times a week for 2 weeks
PGC-1α↑, Corresponding to the rise in ROS, there was also a time-dependent increase in PGC1α protein expression post-AMF exposure
OXPHOS↑, enhancing mitochondrial oxidative phosphorylation (OXPHOS), leading to increased ROS production
Glycolysis↓, metabolic mode of cancer cells to shift from glycolysis, characteristic of cancer cells, toward OXPHOS, which is more typical of normal cells.
PKM2↓, We extracted proteins that changed commonly in U87 and LN229 cells. Among the individual proteins related to metabolism, pyruvate kinase M2 (PKM2) was found to be inhibited in both.

2241- MF,    Pulsed electromagnetic therapy in cancer treatment: Progress and outlook
- Review, Var, NA
other↝, PEMFs act on the cell, it will firstly change the cell membrane transport capacity, osmotic potential and ionic valves
p‑ERK↝, Also, it will cause changes in mitochondrial protein profile, decrease mitochondrial phosphor-ERK (extracellular-signal-regulated kinase), p53, and cytochrome c, and activate OxPhos.
P53↝,
Cyt‑c↝,
OXPHOS↑,
Apoptosis↑, PEMFs decreases cellular stress factors, increase energy demand, this series of reactions will eventually lead to apoptosis.
ROS↑, The introduction of PEFs and PEMFs can improve the penetration efficiency of ROS, not only reduce the concentration of drugs, but also reduce the irradiation dose of CAP, w

538- MF,    The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift
- in-vitro, BC, MDA-MB-231 - in-vitro, Melanoma, MSTO-211H
TumCG↓, did not affect the non-malignant counterpart.
Ca+2↑,
COX2↓,
ATP↑, (ATP5B) and mitochondrial transcription (MT-ATP6)
MMP↑, significant enhancement of mitochondrial membrane potential (ΔΨm)
ROS↑, demonstrated for the first time the association of ROS production with the stimulation of the mitochondrial metabolism triggered by the electromagnetic field
OXPHOS↑,
mitResp↑, Mitochondrial respiration is increased by ELF-EMF exposure

525- MF,    Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis
- in-vitro, Nor, HUVECs
*angioG↑, PEMFs promoted a shift in the energy metabolism pattern of HUVECs from oxidative phosphorylation to aerobic glycolysis.
*GPx1↑, 4x
*GPx4↑, 2.2x
*SOD↑, SOD1/2 3.5x
*PFKM↑, 3x
*PFKL↑, 2.5x
*PKM2↑, 2.6x : activation of PKM2 enhanced angiogenesis in endothelial cells (ECs) by modulating glycolysis, mitochondrial fission, and fusion
*PFKP↑, 2.8x
*HK2↑, 4x
*GLUT1↑, 1.5x
*GLUT4↑, 1.6x
*ROS↓, reminder: normal HUVECs cells
*MMP↝, no damage, (normal cells)
*Glycolysis↑, (PFKL, PFKLM, PFKP, PKM2, and HK2) encoding the three key regulatory enzymes of glycolysis, hexokinase, phosphofructokinase, and pyruvate kinase, sharply increased when HUVECs were exposed to PEMFs
*OXPHOS↓, PEMFs promoted a shift in the energy metabolism pattern of HUVECs from oxidative phosphorylation to aerobic glycolysis


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
Apoptosis↑,1,   ATP↑,1,   ATP∅,1,   Ca+2↑,1,   COX2↓,1,   Cyt‑c↝,1,   ECAR↓,1,   eff↓,1,   p‑ERK↝,1,   Glycolysis↓,1,   mitResp↑,1,   MMP↑,1,   OCR↑,1,   OS↑,1,   other↝,1,   OXPHOS↑,3,   P53↝,1,   PGC-1α↑,1,   PKM2↓,1,   ROS↑,3,   selectivity↑,1,   SOD2↑,1,   TumCG↓,2,   TumCP↓,1,   TumVol↓,1,  
Total Targets: 25

Results for Effect on Normal Cells:
angioG↑,1,   antiOx↑,2,   ATP↑,1,   BMD↑,1,   Diff↑,1,   FAO↑,1,   GLUT1↑,2,   GLUT4↑,1,   Glycolysis↓,1,   Glycolysis↑,2,   GPx1↑,2,   GPx4↑,2,   HK2↑,2,   LDHB↑,1,   mitResp↓,1,   MMP↑,1,   MMP↝,1,   NAD↑,1,   other↝,1,   OXPHOS↓,2,   OXPHOS↑,2,   PFKL↑,2,   PFKM↑,2,   PFKP↑,1,   PGC-1α↑,1,   pH↑,1,   PKM2↑,2,   ROS↓,2,   ROS↑,1,   SOD↑,1,   SOD1↑,1,   TCA↑,1,   toxicity∅,1,   TumCMig↑,1,   tumCV↑,1,   YAP/TEAD↑,1,  
Total Targets: 36

Scientific Paper Hit Count for: OXPHOS, Oxidative phosphorylation
7 Magnetic Fields
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:172  Target#:230  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page