condition found
Features: Therapy |
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range. The main pathways affected are: Calcium Signaling: -influence the activity of voltage-gated calcium channels. Oxidative Stress and Reactive Oxygen Species (ROS) Pathways Heat Shock Proteins (HSPs) and Cellular Stress Responses Cell Proliferation and Growth Signaling: MAPK/ERK pathway. Gene Expression and Epigenetic Modifications: NF-κB Angiogenesis Pathways: VEGF (improving VEGF for normal cells) PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models Pathways: - most reports have ROS production increasing in cancer cells , while decreasing in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells), - cause Cell cycle arrest : TumCCA↑, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Oxidative phosphorylation (or phosphorylation) is the fourth and final step in cellular respiration. Alterations in phosphorylation pathways result in serious outcomes in cancer. Many signalling pathways including Tyrosine kinase, MAP kinase, Cadherin-catenin complex, Cyclin-dependent kinase etc. are major players of the cell cycle and deregulation in their phosphorylation-dephosphorylation cascade has been shown to be manifested in the form of various types of cancers. Many tumors exhibit a well-known metabolic shift known as the Warburg effect, where glycolysis is favored over OxPhos even in the presence of oxygen. However, this is not universal. Many cancers, including certain subpopulations like cancer stem cells, still rely on OXPHOS for energy production, biosynthesis, and survival. – In several cancers, especially during metastasis or in tumors with high metabolic plasticity, OxPhos can remain active or even be upregulated to meet energy demands. In some cancers, high OxPhos activity correlates with aggressive features, resistance to standard therapies, and poor outcomes, particularly when tumor cells exploit mitochondrial metabolism for survival and metastasis. – Conversely, low OxPhos activity can be associated with a reliance on glycolysis, which is also linked with rapid tumor growth and certain adverse prognostic features. Inhibiting oxidative phosphorylation is not a universal strategy against all cancers. Targeting OXPHOS can potentially disrupt the metabolic flexibility of cancer cells, leading to their death or making them more susceptible to other treatments. Since normal cells also rely on OXPHOS, inhibitors must be carefully targeted to avoid significant toxicity to healthy tissues. Not all tumors are the same. Some may be more glycolytic, while others depend more on mitochondrial metabolism. Therefore, metabolic profiling of tumors is crucial before adopting this strategy. Inhibiting OXPHOS is being explored in combination with other treatments (such as chemo- or immunotherapies) to improve efficacy and overcome resistance. In cancer cells, metabolic reprogramming is a hallmark where cells often rely on glycolysis (known as the Warburg effect); however, many cancer types also depend on OXPHOS for energy production and survival. Targeting OXPHOS(using inhibitor) to increase the production of reactive oxygen species (ROS) can selectively induce oxidative stress and cell death in cancer cells. -One side effect of increased OXPHOS is the production of reactive oxygen species (ROS). -Many cancer cells therefore simultaneously upregulate antioxidant systems to mitigate the damaging effects of elevated ROS. -Increase in oxidative phosphorylation can inhibit cancer growth. |
2242- | MF,  |   | Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair |
- | in-vitro, | Nor, | NA |
2247- | MF,  |   | Effects of Pulsed Electromagnetic Field Treatment on Skeletal Muscle Tissue Recovery in a Rat Model of Collagenase-Induced Tendinopathy: Results from a Proteome Analysis |
- | in-vivo, | Nor, | NA |
2249- | MF,  |   | Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study |
- | in-vitro, | Nor, | L929 |
2260- | MF,  |   | Alternative magnetic field exposure suppresses tumor growth via metabolic reprogramming |
- | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | LN229 | - | in-vivo, | NA, | NA |
2241- | MF,  |   | Pulsed electromagnetic therapy in cancer treatment: Progress and outlook |
- | Review, | Var, | NA |
538- | MF,  |   | The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift |
- | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Melanoma, | MSTO-211H |
525- | MF,  |   | Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis |
- | in-vitro, | Nor, | HUVECs |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:172 Target#:230 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid