Features: |
Metal Iron is a vital trace element that plays essential roles in various physiological processes. Its importance stems from its involvement in oxygen transport, energy production, DNA synthesis, and numerous enzymatic reactions. – Iron is a critical component of hemoglobin in red blood cells, enabling the binding and transport of oxygen from the lungs to tissues. – Iron participates in redox reactions due to its ability to alternate between ferrous (Fe²⁺) and ferric (Fe³⁺) states. Tumor cells often require increased iron to support their rapid proliferation and metabolic demands. – Elevated iron availability can promote DNA synthesis, cell division, and tumor growth. • Promotion of Reactive Oxygen Species (ROS) Formation: – Iron’s redox-active nature, while important for normal cell functions, can also lead to the generation of reactive oxygen species via reactions such as the Fenton reaction: Fe²⁺ + H₂O₂ → Fe³⁺ + •OH + OH⁻ – The hydroxyl radicals (•OH) produced are highly reactive and can cause oxidative damage to cellular components (DNA, proteins, lipids). – This oxidative damage may contribute to genomic instability, mutations, and the progression of cancer. Cancer cells often exhibit increased iron dependency, targeting iron metabolism is a strategy that is being explored for cancer therapy. – Approaches include the use of iron chelators to sequester iron and limit its availability to tumor cells, thereby inhibiting their growth. – Alternatively, therapies may aim to exploit iron’s capacity to generate toxic ROS beyond a threshold that cancer cells can manage, leading to selective cell death. |
Features: Therapy |
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range. The main pathways affected are: Calcium Signaling: -influence the activity of voltage-gated calcium channels. Oxidative Stress and Reactive Oxygen Species (ROS) Pathways Heat Shock Proteins (HSPs) and Cellular Stress Responses Cell Proliferation and Growth Signaling: MAPK/ERK pathway. Gene Expression and Epigenetic Modifications: NF-κB Angiogenesis Pathways: VEGF (improving VEGF for normal cells) PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models Pathways: - most reports have ROS production increasing in cancer cells , while decreasing in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells), - cause Cell cycle arrest : TumCCA↑, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
1762- | MF,  | Fe,  |   | Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane |
- | in-vitro, | RCC, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:104 Target#:% State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid