Fe, Iron: Click to Expand ⟱
Features:
Metal
Iron is a vital trace element that plays essential roles in various physiological processes. Its importance stems from its involvement in oxygen transport, energy production, DNA synthesis, and numerous enzymatic reactions.
– Iron is a critical component of hemoglobin in red blood cells, enabling the binding and transport of oxygen from the lungs to tissues.
– Iron participates in redox reactions due to its ability to alternate between ferrous (Fe²⁺) and ferric (Fe³⁺) states.

Tumor cells often require increased iron to support their rapid proliferation and metabolic demands. – Elevated iron availability can promote DNA synthesis, cell division, and tumor growth.

• Promotion of Reactive Oxygen Species (ROS) Formation:
– Iron’s redox-active nature, while important for normal cell functions, can also lead to the generation of reactive oxygen species via reactions such as the Fenton reaction:
Fe²⁺ + H₂O₂ → Fe³⁺ + •OH + OH⁻
– The hydroxyl radicals (•OH) produced are highly reactive and can cause oxidative damage to cellular components (DNA, proteins, lipids).
– This oxidative damage may contribute to genomic instability, mutations, and the progression of cancer.

Cancer cells often exhibit increased iron dependency, targeting iron metabolism is a strategy that is being explored for cancer therapy.
– Approaches include the use of iron chelators to sequester iron and limit its availability to tumor cells, thereby inhibiting their growth.
– Alternatively, therapies may aim to exploit iron’s capacity to generate toxic ROS beyond a threshold that cancer cells can manage, leading to selective cell death.


MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Scientific Papers found: Click to Expand⟱
1762- MF,  Fe,    Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane
- in-vitro, RCC, NA
Dose∅, Apoptosis↑, Casp↑, tumCV↓, Casp3↑, Casp7↑, Ca+2↑, Cyt‑c↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:
Apoptosis↑,1,   Ca+2↑,1,   Casp↑,1,   Casp3↑,1,   Casp7↑,1,   Cyt‑c↑,1,   Dose∅,1,   tumCV↓,1,  
Total Targets: 8

Results for Effect on Normal Cells:

Total Targets: 0

Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:104  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page