condition found tbRes List
RosA, Rosmarinic acid: Click to Expand ⟱
Features: polyphenol
Polyphenol of many herbs - rosemary, perilla, sage mint and basil. Rosmarinic acid (RA) is predominantly found in a variety of medicinal and culinary herbs, especially those belonging to the Lamiaceae family, including rosemary (Rosmarinus officinalis), basil (Ocimum basilicum), sage (Salvia officinalis), thyme (Thymus vulgaris), and mints (Mentha spp.). In addition to the Lamiaceae family, RA is also present in plants from other families, such as Boraginaceae and Apiaceae.
-Rosmarinic acid is one of the hydroxycinnamic acids, and was initially isolated and purified from the extract of rosemary, a member of mint family (Lamiaceae)
-Its chemical structure allows it to act as a free radical scavenger by donating hydrogen atoms to stabilize ROS and free radicals.
RA’s dual nature as both a phenolic acid and a flavonoid-related compound enables it to chelate metal ions and prevent the formation of free radicals, thus interrupting oxidative chain reactions. It can modulate the activity of enzymes involved in OS, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), underscoring its potential role in preventing oxidative damage at the cellular level.
-divided as rosemary extract, carnosic acid, rosmarinic acid?

Summary:
-Capacity to chelate transition metal ions, particularly ironChelator (Fe2+) and copper (Cu2+)
-RA plus Cu(II)-induced oxidative DNA damage, which causes ROS
-rosmarinic acid (RA) as a potential inhibitor of MARK4↓ (inhibiting to tumor growth, invasion, and metastasis) activity (IC50 = 6.204 µM)

-Note half-life 1.5–2 hours.
BioAv water-soluble, rapid absorbtion
Pathways:
- varying results of ROS up or down in cancer cells. Plus a report of lowering ROS and no effect on Tumor cell viability.
However always seems to lower ROS↓ in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress, UPR↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- No indication of Lowering AntiOxidant defense in Cancer Cells:
- Raises AntiOxidant defense in Normal Cells:(and perhaps even in cancer cells) ROS↓, NRF2↑***, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, ERK↓, MARK4↓
- reactivate genes thereby inhibiting cancer cell growth(weak) : HDAC2↓, DNMTs↓weak, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓??, LDHA↓, PFKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells (few references) : CSC↓, Hh↓, GLi1↓,
- Others: PI3K↓, AKT↓, STAT↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ER Stress, endoplasmic reticulum (ER) stress signaling pathway: Click to Expand ⟱
Source:
Type:
Protein expression of ATF, GRP78, and GADD153 which is a hall marker of ER stress.
The endoplasmic reticulum (ER) stress signaling pathway plays a crucial role in maintaining cellular homeostasis and responding to various stressors, including those encountered in cancer. When cells experience stress, such as the accumulation of misfolded proteins, they activate a series of signaling pathways collectively known as the unfolded protein response (UPR). The UPR aims to restore normal function by enhancing the protein-folding capacity of the ER, degrading misfolded proteins, and, if the stress is unresolved, triggering apoptosis.
The activation of ER stress pathways can contribute to resistance against chemotherapy and targeted therapies. Cancer cells may utilize the UPR to survive treatment-induced stress, making it challenging to achieve effective therapeutic outcomes.

-ER stress-associated proteins include: phosphorylation of PERK, eIF2α, ATF4, CHOP and cleaved-caspase 12



Scientific Papers found: Click to Expand⟱
3020- RosA,    Protective Effect of Rosmarinic Acid on Endotoxin-Induced Neuronal Damage Through Modulating GRP78/PERK/MANF Pathway
- in-vivo, Nor, NA - in-vitro, NA, SH-SY5Y
*cognitive↑, 20 and 40 mg/kg RA significantly improve endotoxin-induced cognitive dysfunction without dose differences
*PERK↓, 40 mg/kg RA treatment significantly decreased the hippocampal level of PERK protein
*GRP78/BiP↓, 120 μM RA pretreatment significantly inhibited LPS-conditioned culture-induced GRP78, PERK, and MANF upregulation in vitro.
*ER Stress↓, improving cognitive impairment and suppressing the endoplasmic reticulum stress mediated by the GRP78/IRE1α/JNK pathway.

3023- RosA,    Rosmarinic acid alleviates septic acute respiratory distress syndrome in mice by suppressing the bronchial epithelial RAS-mediated ferroptosis
- in-vivo, Sepsis, NA
*GPx4↑, RA notably inhibited the infiltration into the lungs of neutrophils and monocytes with increased amounts of GPX4 and ACE2 proteins, lung function improvement,
*Inflam↓, decreased inflammatory cytokines levels and ER stress in LPS-induced ARDS in mice.
*ER Stress↓,
*Ferroptosis↓, the anti-ferroptosis effect of RA in LPS-induced septic
*Sepsis↓,
*GRP78/BiP↓, Previously, we reported that RA markedly ameliorated septic-associated mortality and lung injury via inhibiting GRP78/IRE1α/JNK pathway-mediated ERS
*IRE1↓,
JNK↓,

3025- RosA,    Rosmarinic acid alleviates intestinal inflammatory damage and inhibits endoplasmic reticulum stress and smooth muscle contraction abnormalities in intestinal tissues by regulating gut microbiota
- in-vivo, IBD, NA
*GutMicro↑, RA upregulated the abundance of Lactobacillus johnsonii and Candidatus Arthromitus sp SFB-mouse-NL and downregulated the abundance of Bifidobacterium pseudolongum, Escherichia coli, and Romboutsia ilealis.
*ROCK1↓, RA downregulated the expressions of ROCK, RhoA, CaM, MLC, MLCK, ZEB1, ZO-1, ZO-2, occludin, E-cadherin, IL-1β, IL-6, TNF-α, GRP78, PERK, IRE1, ATF6, CHOP, Caspase12, Caspase9, Caspase3, Bax, Cytc, RIPK1, RIPK3, MLKL
*Rho↓,
*CaMKII ↓,
*Zeb1↓,
*ZO-1↓,
*E-cadherin↓,
*IL1β↓,
*IL6↓,
*TNF-α↓,
*GRP78/BiP↓,
*PERK↓,
*IRE1↓,
*ATF6↓,
*CHOP↓,
*Casp12↓,
*Casp9↓,
*BAX↓,
*Casp3↓,
*Cyt‑c↓,
*RIP1↓,
*MLKL↓,
*IL10↑, upregulated the expression of IL-10 and Bcl-2.
*Bcl-2↑,
*ER Stress↓, RA inhibited the inflammation, which is caused by tight junction damage, by repairing intestinal flora dysbiosis, relieved endoplasmic reticulum stress, inhibited cell death

3033- RosA,    Rosemary (Rosmarinus officinalis) Extract Modulates CHOP/GADD153 to Promote Androgen Receptor Degradation and Decreases Xenograft Tumor Growth
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, LNCaP - vitro+vivo, NA, NA
ER Stress↑, A significant modulation of endoplasmic reticulum stress proteins was observed in cancer cells while normal prostate epithelial cells did not undergo endoplasmic reticulum stress.
selectivity↑,
AR↓, rosemary extract to decrease androgen receptor expression that appears to be regulated by the expression of CHOP/GADD153
TumCG↓, Rosemary extract modulates cell growth and induces cell cycle arrest in prostate cancer cell lines.
TumCCA↑,
CHOP↑, We observed an increase in overall protein expression of CHOP
PERK↓, decrease in PERK expression in prostate epithelial cells was observed following treatment with rosemary extract.
GRP78/BiP↑, rosemary extract induced BiP expression is essential for apoptosis.
PSA↓, AR and PSA is decreased and that of CHOP is increased in rosemary extract treated tissue lysates compared to lysates from control group animals.

3002- RosA,    Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols
- Review, Var, NA
TumCG↓, SW480 colon cancer cells and found RE to significantly decrease cell growth at a concentration of 31.25 µg/mL (48 h),
TumCP↓, Cell proliferation was dramatically decreased and cell cycle arrest was induced in HT-29 and SW480 c
TumCCA↑,
ChemoSen↑, RE enhanced the inhibitory effects of the chemotherapeutic drug 5-fluorouracil (5-FU) on proliferation and sensitized 5-FU resistant cells
NRF2↑, HCT116 ↑ Nrf2, ↑ PERK, ↑ sestrin-2, ↑ HO-1, ↑ cleaved-casp 3
PERK↑,
SESN2↑,
HO-1↑,
cl‑Casp3↑,
ROS↑, HT-29 ↑ ROS accumulation, ↑ UPR, ↑ ER-stress
UPR↑,
ER Stress↑,
CHOP↑, HT-29: ↑ ROS levels, ↑ HO-1 and CHOP
HER2/EBBR2↓, SK-BR-3: ↑ FOS levels, ↑ PARP cleavage, ↓ HER2, ↓ ERBB2, ↓ ERα receptor.
ER-α36↓,
PSA↓, LNCaP : ↑ CHOP, ↓ PSA production, ↑ Bax, ↑ cleaved-casp 3, ↓ androgen receptor expression
BAX↑,
AR↓,
P-gp↓, A2780: ↓ P-glyco protein, ↑ cytochrome c gene, ↑ hsp70 gene
Cyt‑c↑,
HSP70/HSPA5↑,
eff↑, This study noted that the rosemary essential oil was more potent than its individual components (α-pinene, β-pinene, 1,8-cineole) when tested alone at the same concentrations.
p‑Akt↓, A549: ↓ p-Akt, ↓ p-mTOR, ↓ p-P70S6K, ↑ PARP cleavage
p‑mTOR↓,
p‑P70S6K↓,
cl‑PARP↑,
eff↑, RE containing 10 µM equivalent of CA, or 10 µM CA alone (96 h) potentiated the ability of vitamin D derivatives to inhibit cell viability and proliferation, induce apoptosis and cell cycle arrest and increase differentiation of WEHI-3BD murine leukem


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
p‑Akt↓,1,   AR↓,2,   BAX↑,1,   cl‑Casp3↑,1,   ChemoSen↑,1,   CHOP↑,2,   Cyt‑c↑,1,   eff↑,2,   ER Stress↑,2,   ER-α36↓,1,   GRP78/BiP↑,1,   HER2/EBBR2↓,1,   HO-1↑,1,   HSP70/HSPA5↑,1,   JNK↓,1,   p‑mTOR↓,1,   NRF2↑,1,   P-gp↓,1,   p‑P70S6K↓,1,   cl‑PARP↑,1,   PERK↓,1,   PERK↑,1,   PSA↓,2,   ROS↑,1,   selectivity↑,1,   SESN2↑,1,   TumCCA↑,2,   TumCG↓,2,   TumCP↓,1,   UPR↑,1,  
Total Targets: 30

Results for Effect on Normal Cells:
ATF6↓,1,   BAX↓,1,   Bcl-2↑,1,   CaMKII ↓,1,   Casp12↓,1,   Casp3↓,1,   Casp9↓,1,   CHOP↓,1,   cognitive↑,1,   Cyt‑c↓,1,   E-cadherin↓,1,   ER Stress↓,3,   Ferroptosis↓,1,   GPx4↑,1,   GRP78/BiP↓,3,   GutMicro↑,1,   IL10↑,1,   IL1β↓,1,   IL6↓,1,   Inflam↓,1,   IRE1↓,2,   MLKL↓,1,   PERK↓,2,   Rho↓,1,   RIP1↓,1,   ROCK1↓,1,   Sepsis↓,1,   TNF-α↓,1,   Zeb1↓,1,   ZO-1↓,1,  
Total Targets: 30

Scientific Paper Hit Count for: ER Stress, endoplasmic reticulum (ER) stress signaling pathway
5 Rosmarinic acid
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:142  Target#:103  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page