condition found
Features: polyphenol |
Polyphenol of many herbs - rosemary, perilla, sage mint and basil. Rosmarinic acid (RA) is predominantly found in a variety of medicinal and culinary herbs, especially those belonging to the Lamiaceae family, including rosemary (Rosmarinus officinalis), basil (Ocimum basilicum), sage (Salvia officinalis), thyme (Thymus vulgaris), and mints (Mentha spp.). In addition to the Lamiaceae family, RA is also present in plants from other families, such as Boraginaceae and Apiaceae. -Rosmarinic acid is one of the hydroxycinnamic acids, and was initially isolated and purified from the extract of rosemary, a member of mint family (Lamiaceae) -Its chemical structure allows it to act as a free radical scavenger by donating hydrogen atoms to stabilize ROS and free radicals. RA’s dual nature as both a phenolic acid and a flavonoid-related compound enables it to chelate metal ions and prevent the formation of free radicals, thus interrupting oxidative chain reactions. It can modulate the activity of enzymes involved in OS, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), underscoring its potential role in preventing oxidative damage at the cellular level. -divided as rosemary extract, carnosic acid, rosmarinic acid? Summary: -Capacity to chelate transition metal ions, particularly ironChelator (Fe2+) and copper (Cu2+) -RA plus Cu(II)-induced oxidative DNA damage, which causes ROS -rosmarinic acid (RA) as a potential inhibitor of MARK4↓ (inhibiting to tumor growth, invasion, and metastasis) activity (IC50 = 6.204 µM) -Note half-life 1.5–2 hours. BioAv water-soluble, rapid absorbtion Pathways: - varying results of ROS up or down in cancer cells. Plus a report of lowering ROS and no effect on Tumor cell viability. However always seems to lower ROS↓ in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, - No indication of Lowering AntiOxidant defense in Cancer Cells: - Raises AntiOxidant defense in Normal Cells:(and perhaps even in cancer cells) ROS↓, NRF2↑***, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, ERK↓, MARK4↓ - reactivate genes thereby inhibiting cancer cell growth(weak) : HDAC2↓, DNMTs↓weak, P53↑, HSP↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓??, LDHA↓, PFKs↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, - inhibits Cancer Stem Cells (few references) : CSC↓, Hh↓, GLi1↓, - Others: PI3K↓, AKT↓, STAT↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
HDAC2 is a member of the class I histone deacetylase family that removes acetyl groups from lysine residues on histone proteins. • This deacetylation usually promotes chromatin compaction, leading to transcriptional repression of genes involved in cell differentiation, apoptosis, and cell cycle regulation. • HDAC2, along with its relatives HDAC1 and others, is often found as part of multiprotein corepressor complexes that regulate gene expression in both normal and cancer cells. 2. Role of HDAC2 in Cancer • Overexpression and Dysregulation: – In several types of cancer, HDAC2 is overexpressed or dysregulated, contributing to an altered transcriptional profile. – Elevated HDAC2 levels can lead to the suppression of tumor suppressor genes and genes involved in cell-cycle checkpoints or apoptosis, facilitating tumor progression. • Impact on the Tumor Microenvironment: – HDAC2 activity influences not only tumor cells but also the surrounding stromal and immune cells, affecting inflammatory responses and immune evasion strategies. |
3029- | RosA,  |   | Rosmarinic Acid, a Component of Rosemary Tea, Induced the Cell Cycle Arrest and Apoptosis through Modulation of HDAC2 Expression in Prostate Cancer Cell Lines |
- | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 |
3030- | RosA,  |   | Anticancer Activity of Rosmarinus officinalis L.: Mechanisms of Action and Therapeutic Potentials |
- | Review, | Var, | NA |
3003- | RosA,  |   | Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases |
- | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
1748- | RosA,  |   | The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity |
- | Review, | Var, | NA |
3001- | RosA,  |   | Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review |
- | Review, | Var, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:142 Target#:984 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid