condition found
Features: polyphenol |
Polyphenol of many herbs - rosemary, perilla, sage mint and basil. Rosmarinic acid (RA) is predominantly found in a variety of medicinal and culinary herbs, especially those belonging to the Lamiaceae family, including rosemary (Rosmarinus officinalis), basil (Ocimum basilicum), sage (Salvia officinalis), thyme (Thymus vulgaris), and mints (Mentha spp.). In addition to the Lamiaceae family, RA is also present in plants from other families, such as Boraginaceae and Apiaceae. -Rosmarinic acid is one of the hydroxycinnamic acids, and was initially isolated and purified from the extract of rosemary, a member of mint family (Lamiaceae) -Its chemical structure allows it to act as a free radical scavenger by donating hydrogen atoms to stabilize ROS and free radicals. RA’s dual nature as both a phenolic acid and a flavonoid-related compound enables it to chelate metal ions and prevent the formation of free radicals, thus interrupting oxidative chain reactions. It can modulate the activity of enzymes involved in OS, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), underscoring its potential role in preventing oxidative damage at the cellular level. -divided as rosemary extract, carnosic acid, rosmarinic acid? Summary: -Capacity to chelate transition metal ions, particularly ironChelator (Fe2+) and copper (Cu2+) -RA plus Cu(II)-induced oxidative DNA damage, which causes ROS -rosmarinic acid (RA) as a potential inhibitor of MARK4↓ (inhibiting to tumor growth, invasion, and metastasis) activity (IC50 = 6.204 µM) -Note half-life 1.5–2 hours. BioAv water-soluble, rapid absorbtion Pathways: - varying results of ROS up or down in cancer cells. Plus a report of lowering ROS and no effect on Tumor cell viability. However always seems to lower ROS↓ in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, - No indication of Lowering AntiOxidant defense in Cancer Cells: - Raises AntiOxidant defense in Normal Cells:(and perhaps even in cancer cells) ROS↓, NRF2↑***, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, ERK↓, MARK4↓ - reactivate genes thereby inhibiting cancer cell growth(weak) : HDAC2↓, DNMTs↓weak, P53↑, HSP↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓??, LDHA↓, PFKs↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, - inhibits Cancer Stem Cells (few references) : CSC↓, Hh↓, GLi1↓, - Others: PI3K↓, AKT↓, STAT↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: CGL-CF |
Type: HH |
Sonic hedgehog, Shh; Indian hedgehog, Ihh; Desert hedgehog, Dhh ; Hh signaling pathway is able to regulate the EMT. Hh signaling-related factors, SHH, SMO and GLI1. Hedgehog signaling is a crucial pathway in embryonic development and tissue homeostasis, but its dysregulation has been implicated in various cancers. The Hedgehog (Hh) pathway is activated by the binding of Hedgehog ligands (such as Sonic Hedgehog, Indian Hedgehog, and Desert Hedgehog) to their receptors, primarily Patched (PTCH) and Smoothened (SMO). -Hedgehog pathway is crucial for the maintenance of stem cell populations. When deregulated, it can help sustain cancer stem cells (CSCs) that possess self-renewal properties, drive tumor recurrence, and confer resistance to conventional therapies. -Inhibitors of the pathway, such as vismodegib and sonidegib, have been developed and are used in clinical settings, particularly for treating advanced BCC and other Hedgehog-dependent tumors. |
1744- | RosA,  |   | Therapeutic Applications of Rosmarinic Acid in Cancer-Chemotherapy-Associated Resistance and Toxicity |
- | Review, | Var, | NA |
1747- | RosA,  |   | Molecular Pathways of Rosmarinic Acid Anticancer Activity in Triple-Negative Breast Cancer Cells: A Literature Review |
- | Review, | BC, | MDA-MB-231 | - | Review, | BC, | MDA-MB-468 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:142 Target#:141 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid