condition found tbRes List
RosA, Rosmarinic acid: Click to Expand ⟱
Features: polyphenol
Polyphenol of many herbs - rosemary, perilla, sage mint and basil. Rosmarinic acid (RA) is predominantly found in a variety of medicinal and culinary herbs, especially those belonging to the Lamiaceae family, including rosemary (Rosmarinus officinalis), basil (Ocimum basilicum), sage (Salvia officinalis), thyme (Thymus vulgaris), and mints (Mentha spp.). In addition to the Lamiaceae family, RA is also present in plants from other families, such as Boraginaceae and Apiaceae.
-Rosmarinic acid is one of the hydroxycinnamic acids, and was initially isolated and purified from the extract of rosemary, a member of mint family (Lamiaceae)
-Its chemical structure allows it to act as a free radical scavenger by donating hydrogen atoms to stabilize ROS and free radicals.
RA’s dual nature as both a phenolic acid and a flavonoid-related compound enables it to chelate metal ions and prevent the formation of free radicals, thus interrupting oxidative chain reactions. It can modulate the activity of enzymes involved in OS, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), underscoring its potential role in preventing oxidative damage at the cellular level.
-divided as rosemary extract, carnosic acid, rosmarinic acid?

Summary:
-Capacity to chelate transition metal ions, particularly ironChelator (Fe2+) and copper (Cu2+)
-RA plus Cu(II)-induced oxidative DNA damage, which causes ROS
-rosmarinic acid (RA) as a potential inhibitor of MARK4↓ (inhibiting to tumor growth, invasion, and metastasis) activity (IC50 = 6.204 µM)

-Note half-life 1.5–2 hours.
BioAv water-soluble, rapid absorbtion
Pathways:
- varying results of ROS up or down in cancer cells. Plus a report of lowering ROS and no effect on Tumor cell viability.
However always seems to lower ROS↓ in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- No indication of Lowering AntiOxidant defense in Cancer Cells:
- Raises AntiOxidant defense in Normal Cells:(and perhaps even in cancer cells) ROS↓, NRF2↑***, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, ERK↓, MARK4↓
- reactivate genes thereby inhibiting cancer cell growth(weak) : HDAC2↓, DNMTs↓weak, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓??, LDHA↓, PFKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells (few references) : CSC↓, Hh↓, GLi1↓,
- Others: PI3K↓, AKT↓, STAT↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


RenoP, K,Renoprotection: Click to Expand ⟱
Source:
Type:
Protects kidneys
-Same as nephroprotective
Opposite is : Nephrotoxicity is toxicity in the kidneys


Scientific Papers found: Click to Expand⟱
1747- RosA,    Molecular Pathways of Rosmarinic Acid Anticancer Activity in Triple-Negative Breast Cancer Cells: A Literature Review
- Review, BC, MDA-MB-231 - Review, BC, MDA-MB-468
TumCCA↑, Rosmarinic Acid arrests the G0/G1 phase in MDA-MB-231 cells and the S-phase in MDA-MB-468 cells following apoptosis (interruption of the G2/M process).
TNF-α↑, Rosmarinic Acid enhanced the expression of TNF (tumor necrosis factor), GADD45A (growth arrest and DNA damage-inducible 45 alpha), and the proapoptotic BNIP3
GADD45A↑,
BNIP3↑,
survivin↓, IRC5 (Survivin) inhibition appears to be the most important effect of Rosmarinic Acid on MDA-MB-468 cells
Bcl-2↓, Bcl-2 gene is downregulated while the Bax gene expression is increased in the presence of Rosmarinic Acid
BAX↑,
HH↓, The experiments showed that Rosmarinic Acid inhibited Hh signaling genes’ expression in BCSCs.
eff↑, rosemary extract with Rosmarinic Acid and carnosic acid as primary ingredients inhibited cancer cell viability in the ER+, HER2+, and TNBC subtypes (MDA-MB-231 and MDA-MB-468 cells)
ChemoSen↑, The inhibition of NF-κB increases chemotherapy and radiation results
RadioS↑,
TumCP↓, In vitro experiments in MDA-MB-231 cancer cells treated with Rosmarinic Acid have shown that proliferation and migration were significantly attenuated, and eventually, cells were led to apoptosis
TumCMig↓,
Apoptosis↑,
RenoP↑, Rosmarinic Acid decreased the hepatic and renal toxicity induced by methotrexate, as well as the cardiotoxicity of doxorubicin
CardioT↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:
Apoptosis↑,1,   BAX↑,1,   Bcl-2↓,1,   BNIP3↑,1,   CardioT↓,1,   ChemoSen↑,1,   eff↑,1,   GADD45A↑,1,   HH↓,1,   RadioS↑,1,   RenoP↑,1,   survivin↓,1,   TNF-α↑,1,   TumCCA↑,1,   TumCMig↓,1,   TumCP↓,1,  
Total Targets: 16

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: RenoP, K,Renoprotection
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:142  Target#:1175  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page