condition found tbRes List
RosA, Rosmarinic acid: Click to Expand ⟱
Features: polyphenol
Polyphenol of many herbs - rosemary, perilla, sage mint and basil. Rosmarinic acid (RA) is predominantly found in a variety of medicinal and culinary herbs, especially those belonging to the Lamiaceae family, including rosemary (Rosmarinus officinalis), basil (Ocimum basilicum), sage (Salvia officinalis), thyme (Thymus vulgaris), and mints (Mentha spp.). In addition to the Lamiaceae family, RA is also present in plants from other families, such as Boraginaceae and Apiaceae.
-Rosmarinic acid is one of the hydroxycinnamic acids, and was initially isolated and purified from the extract of rosemary, a member of mint family (Lamiaceae)
-Its chemical structure allows it to act as a free radical scavenger by donating hydrogen atoms to stabilize ROS and free radicals.
RA’s dual nature as both a phenolic acid and a flavonoid-related compound enables it to chelate metal ions and prevent the formation of free radicals, thus interrupting oxidative chain reactions. It can modulate the activity of enzymes involved in OS, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), underscoring its potential role in preventing oxidative damage at the cellular level.
-divided as rosemary extract, carnosic acid, rosmarinic acid?

Summary:
-Capacity to chelate transition metal ions, particularly ironChelator (Fe2+) and copper (Cu2+)
-RA plus Cu(II)-induced oxidative DNA damage, which causes ROS
-rosmarinic acid (RA) as a potential inhibitor of MARK4↓ (inhibiting to tumor growth, invasion, and metastasis) activity (IC50 = 6.204 µM)

-Note half-life 1.5–2 hours.
BioAv water-soluble, rapid absorbtion
Pathways:
- varying results of ROS up or down in cancer cells. Plus a report of lowering ROS and no effect on Tumor cell viability.
However always seems to lower ROS↓ in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- No indication of Lowering AntiOxidant defense in Cancer Cells:
- Raises AntiOxidant defense in Normal Cells:(and perhaps even in cancer cells) ROS↓, NRF2↑***, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, ERK↓, MARK4↓
- reactivate genes thereby inhibiting cancer cell growth(weak) : HDAC2↓, DNMTs↓weak, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓??, LDHA↓, PFKs↓, GRP78↑, GlucoseCon
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells (few references) : CSC↓, Hh↓, GLi1↓,
- Others: PI3K↓, AKT↓, STAT↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


GlucoseCon, Glucose Consumption: Click to Expand ⟱
Source:
Type:
Glucose consumption is often elevated in cancer cells due to an increased reliance on glycolysis for energy production, even in the presence of oxygen. This phenomenon, known as the Warburg effect, is a metabolic shift that allows cancer cells to rapidly proliferate and survive in nutrient-poor environments.

The increased glucose consumption in cancer cells can be detected using positron emission tomography (PET) scans, which measure the uptake of a glucose analog labeled with a radioactive tracer.


Scientific Papers found: Click to Expand⟱
3022- RosA,    Rosmarinic acid against cognitive impairment via RACK1/HIF-1α regulated microglial polarization in sepsis-surviving mice
- in-vitro, Sepsis, NA
*cognitive↑, Rosmarinic acid alleviates cognitive impairment and glycolytic metabolism abnormality in sepsis mice model.
*neuroP↑, Rosmarinic acid attenuates neuronal injury and microglial activation.
*GlucoseCon↑, promoted whole-brain glucose uptake in mice.
*Hif1a↓, (rescued the decrease of RACK1 and increase of HIF-1α)

3026- RosA,    Modulatory Effect of Rosmarinic Acid on H2O2-Induced Adaptive Glycolytic Response in Dermal Fibroblasts
- in-vitro, Nor, NA
*ROS↑, H2O2 caused a significant ROS increase in the cells, and pre-treatment with rosmarinic acid (5–50 µM) decreased ROS significantly in the presence of glutathione
*ATP↑, The rosmarinic acid also recovered intracellular ATP and decreased NADPH production via the pentose phosphate pathway.
*NADPH↓,
*HK2↓, (HK-2), phosphofructokinase-2 (PFK-2), and lactate dehydrogenase A (LDHA), were downregulated in cells treated with rosmarinic acid
*PFK2↓,
*LDHA↓,
*GSR↑, GSR), glutathione peroxidase-1 (GPx-1), and peroxiredoxin-1 (Prx-1) and redox protein thioredoxin-1 (Trx-1) were upregulated in treated cells compared to control cells.
*GPx↑,
*Prx↑,
*Trx↑,
*antiOx↑, To sum up, the rosmarinic acid could be used as an antioxidant against H2O2-induced adaptive responses in fibroblasts by modulating glucose metabolism, glycolytic genes, and GSH production.
*GSH↑, The pre-treatment of rosmarinic acid could raise intracellular GSH to protect cells from ROS
*ROS↓, rosmarinic acid pre-treatment reduced the amount of ROS in the fibroblasts upon the addition of H2O2
*GlucoseCon↓, both compounds also decreased glucose consumption and lactate production
*lactateProd↓,
*Glycolysis↝, The results indicated that rosmarinic acid is able to shape cellular glucose utilization, glycolysis, and GSH.
*ATP↑, The rosmarinic acid also recovered intracellular ATP and decreased NADPH production via the pentose phosphate pathway.
*NADPH↓,
*PPP↓,

3036- RosA,    Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells
- in-vitro, CRC, HCT8 - in-vitro, CRC, HCT116 - in-vitro, CRC, LS174T
GlucoseCon↓, RA suppressed glucose consumption and lactate generation in colorectal carcinoma cells;
lactateProd↓,
Hif1a↓, RA inhibited the expression of transcription factor hypoxia-inducible factor-1α (HIF-1α) that affects the glycolytic pathway.
Inflam↓, RA could not only repress proinflammatory cytokines using enzyme-linked immunosorbent assay but it could also suppress microRNAs related to inflammation by real-time PCR
miR-155↓, MiR-155 induces the Warburg effect and is reversed by RA
STAT3↓, RA could inhibit the expression of transcription factor STAT3, and it suppressed the phosphorylation of STAT3
Glycolysis↓, Meanwhile, RA inhibited the expression of transcription factor HIF-1α that affected the glycolytic pathway
IL6↓, RA could significantly regulate miR-155 and in turn alter the IL-6/STAT3 signaling, resulting in the inhibition of inflammation in the tumor micro environment and the eventual anti-Warburg effect
Warburg↓,

3003- RosA,    Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases
- Review, Var, NA - Review, AD, NA - Review, Park, NA
*Inflam↓, anti-inflammatory and antioxidant properties and its roles in various life-threatening conditions, such as cancer, neurodegeneration, diabetes,
*antiOx↑,
*neuroP↑,
*IL6↓, diabetic rat model treated with RA, there is an anti-inflammatory activity reported. This activity is achieved through the inhibition of the expression of various proinflammatory factors, including in IL-6, (IL-1β), tumour
*IL1β↓,
*NF-kB↓, inhibiting NF-κB activity and reducing the production of prostaglandin E2 (PGE2), nitric oxide (NO), and cyclooxygenase-2 (COX-2) in RAW 264.7 cells.
*PGE2↓,
*COX2↓,
*MMP↑, RA inhibits cytotoxicity in tumour patients by maintaining the mitochondrial membrane potential
*memory↑, amyloid β(25–35)-induced AD in rats was treated with RA, which mitigated the impairment of learning and memory disturbance by reducing oxidative stress
*ROS↓,
*Aβ↓, daily consumption of RA diminished the effect of neurotoxicity of Aβ25–35 in mice
*HMGB1↓, SH-SY5Y in vitro and ischaemic diabetic stroke in vivo, and the studies revealed that a 50 mg/kg dose of RA decreased HMGB1 expression
TumCG↓, Rosemary and its extracts have been shown to exhibit potential in inhibiting the growth of cancer cells and the development of tumours in various cancer types, including colon, breast, liver, and stomach cancer
MARK4↓, Another study reported the inhibition of Microtubule affinity regulating kinase 4 (MARK4) by RA
Zeb1↓, Fig 4 BC:
MDM2↓,
BNIP3↑,
ASC↑, Skin Cancer
NLRP3↓,
PI3K↓,
Akt↓,
Casp1↓,
E-cadherin↑, Colon Cancer
STAT3↓,
TLR4↓,
MMP↓,
ICAM-1↓,
AMPK↓,
IL6↑, PC and GC
MMP2↓,
Warburg↓,
Bcl-xL↓, CRC: Apoptosis induction caspases ↑, Bcl-XL ↓, BCL-2 ↓, Induces cell cycle arrest, Inhibition of EMT and invasion, Reduced metastasis
Bcl-2↓,
TumCCA↑,
EMT↓,
TumMeta↓,
mTOR↓, Inhibits mTOR/S6K1 pathway to induce apoptosis in cervical cancer
HSP27↓, Glioma ↓ expression of HSP27 ↑ caspase-3
Casp3↑,
GlucoseCon↓, GC: Inhibited the signs of the Warburg effect, such as high glucose consumption/anaerobic glycolysis, lactate production/cell acidosis, by inhibiting the IL-6/STAT3 pathway
lactateProd↓,
VEGF↓, ↓ angiogenic factors (VEGF) and phosphorylation of p65
p‑p65↓,
GIT1↓, PC: Increased degradation of Gli1
Foxm1↓, inhibiting FOXM1
cycD1↓, RA treatment in CRC cells inhibited proliferation-induced cell cycle arrest of the G0/G1 phase by reducing the cyclin D1 and CDK4 levels,
CDK4↓,
MMP9↓, CRC cells, and it led to a decrease in the expressions of matrix metalloproteinase (MMP)-2 and MMP-9.
HDAC2↓, PCa cells through the inhibition of HDAC2

3001- RosA,    Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review
- Review, Var, NA
TumCP↓, including in tumor cell proliferation, apoptosis, metastasis, and inflammation
Apoptosis↑,
TumMeta↓,
Inflam↓,
*antiOx↑, RA is therefore considered to be the strongest antioxidant of all hydroxycinnamic acid derivatives
*AntiAge↑, , it also exerts powerful antimicrobial, anti-inflammatory, antioxidant and even antidepressant, anti-aging effects
*ROS↓, RA and its metabolites can directly neutralize reactive oxygen species (ROS) [10] and thereby reduce the formation of oxidative damage products.
BioAv↑, RA is water-soluble, and according to literature data, the efficacy of secretion of this compound in infusions is about 90%
Dose↝, Accordingly, it is possible to consume approximately 110 mg RA daily, i.e., approximately 1.6 mg/kg for adult men weighing 70 kg.
NRF2↑, liver cancer cell line, HepG2, transfected with plasmid containing ARE-luciferin gene, RA predominantly enhances ARE-luciferin activity and promotes nuclear factor E2-related factor-2 (Nrf2) translocation from cytoplasm to the nucleus
P-gp↑, and also increases MRP2 and P-gp efflux activity along with intercellular ATP level
ATP↑,
MMPs↓, RA concurrently induced necrosis and apoptosis and stimulated MMP dysfunction activated PARP-cleavage and caspase-independent apoptosis.
cl‑PARP↓,
Hif1a↓, inhibits transcription factor hypoxia-inducible factor-1α (HIF-1α) expression
GlucoseCon↓, it also suppressed glucose consumption and lactate production in colorectal cells
lactateProd↓,
Warburg↓, may suppress the Warburg effects through an inflammatory pathway involving activator of transcription-3 (STAT3) and signal transducer of interleukin (IL)-6
TNF-α↓, RA supplementation also reduced tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2) and IL-6 levels, and modulated p65 expression [
COX2↓,
IL6↓,
HDAC2↓, RA induced the cell cycle arrest and apoptosis in prostate cancer cell lines (PCa, PC-3, and DU145) [31]. These effects were mediated through modulation of histone deacetylases expression (HDACs), specifically HDAC2;
GSH↑, RA can also inhibit adhesion, invasion, and migration of Ls 174-T human colon carcinoma cells through enhancing GSH levels and decreasing ROS levels
ROS↓,
ChemoSen↑, RA also enhances chemosensitivity of human resistant gastric carcinoma SGC7901 cells
*BG↓, RA significantly increased insulin index sensitivity and reduced blood glucose, advanced glycation end-products, HbA1c, IL-1β, TNFα, IL-6, p-JNK, P38 mitogen-activated protein kinase (MAPK), and NF-κB levels
*IL1β↓,
*TNF-α↓,
*IL6↓,
*p‑JNK↓,
*p38↓,
*Catalase↑, The reduced activities of CAT, SOD, glutathione S-transferases (GST), and glutathione peroxidase (GPx) and the reduced levels of vitamins C and E, ceruloplasmin, and GSH in plasma of diabetic rats were also significantly recovered by RA application
*SOD↑,
*GSTs↑,
*VitC↑,
*VitE↑,
*GSH↑,
*GutMicro↑, protective effects of RA (30 mg/kg) against hypoglycemia, hyperlipidemia, oxidative stress, and an imbalanced gut microbiota architecture was studied in diabetic rats.
*cardioP↑, Cardioprotective Activity: RA also reduced fasting serum levels of vascular cell adhesion molecule 1 (VCAM-1), inter-cellular adhesion molecule 1 (ICAM-1), plasminogen-activator-inhibitor-1 (PAI-1), and increased GPX and SOD levels
*ROS↓, Finally, in H9c2 cardiac muscle cells, RA inhibited apoptosis by decreasing intracellular ROS generation and recovering mitochondria membrane potential
*MMP↓,
*lipid-P↓, At once, RA suppresses lipid peroxidation (LPO) and ROS generation, whereas in HSC-T6 cells it increases cellular GSH.
*NRF2↑, Additionally, it significantly increases Nrf2 translocation
*hepatoP↑, Hepatoprotective Activity
*neuroP↑, Nephroprotective Activity
*P450↑, RA also reduced CP-produced oxidative stress and amplified cytochrome P450 2E1 (CYP2E1), HO-1, and renal-4-hydroxynonenal expression.
*HO-1↑,
*AntiAge↑, Anti-Aging Activity
*motorD↓, A significantly delays motor neuron dysfunction in paw grip endurance tests,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   AMPK↓,1,   Apoptosis↑,1,   ASC↑,1,   ATP↑,1,   Bcl-2↓,1,   Bcl-xL↓,1,   BioAv↑,1,   BNIP3↑,1,   Casp1↓,1,   Casp3↑,1,   CDK4↓,1,   ChemoSen↑,1,   COX2↓,1,   cycD1↓,1,   Dose↝,1,   E-cadherin↑,1,   EMT↓,1,   Foxm1↓,1,   GIT1↓,1,   GlucoseCon↓,3,   Glycolysis↓,1,   GSH↑,1,   HDAC2↓,2,   Hif1a↓,2,   HSP27↓,1,   ICAM-1↓,1,   IL6↓,2,   IL6↑,1,   Inflam↓,2,   lactateProd↓,3,   MARK4↓,1,   MDM2↓,1,   miR-155↓,1,   MMP↓,1,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   mTOR↓,1,   NLRP3↓,1,   NRF2↑,1,   P-gp↑,1,   p‑p65↓,1,   cl‑PARP↓,1,   PI3K↓,1,   ROS↓,1,   STAT3↓,2,   TLR4↓,1,   TNF-α↓,1,   TumCCA↑,1,   TumCG↓,1,   TumCP↓,1,   TumMeta↓,2,   VEGF↓,1,   Warburg↓,3,   Zeb1↓,1,  
Total Targets: 56

Results for Effect on Normal Cells:
AntiAge↑,2,   antiOx↑,3,   ATP↑,2,   Aβ↓,1,   BG↓,1,   cardioP↑,1,   Catalase↑,1,   cognitive↑,1,   COX2↓,1,   GlucoseCon↓,1,   GlucoseCon↑,1,   Glycolysis↝,1,   GPx↑,1,   GSH↑,2,   GSR↑,1,   GSTs↑,1,   GutMicro↑,1,   hepatoP↑,1,   Hif1a↓,1,   HK2↓,1,   HMGB1↓,1,   HO-1↑,1,   IL1β↓,2,   IL6↓,2,   Inflam↓,1,   p‑JNK↓,1,   lactateProd↓,1,   LDHA↓,1,   lipid-P↓,1,   memory↑,1,   MMP↓,1,   MMP↑,1,   motorD↓,1,   NADPH↓,2,   neuroP↑,3,   NF-kB↓,1,   NRF2↑,1,   p38↓,1,   P450↑,1,   PFK2↓,1,   PGE2↓,1,   PPP↓,1,   Prx↑,1,   ROS↓,4,   ROS↑,1,   SOD↑,1,   TNF-α↓,1,   Trx↑,1,   VitC↑,1,   VitE↑,1,  
Total Targets: 50

Scientific Paper Hit Count for: GlucoseCon, Glucose Consumption
5 Rosmarinic acid
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:142  Target#:623  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page