condition found tbRes List
RosA, Rosmarinic acid: Click to Expand ⟱
Features: polyphenol
Polyphenol of many herbs - rosemary, perilla, sage mint and basil. Rosmarinic acid (RA) is predominantly found in a variety of medicinal and culinary herbs, especially those belonging to the Lamiaceae family, including rosemary (Rosmarinus officinalis), basil (Ocimum basilicum), sage (Salvia officinalis), thyme (Thymus vulgaris), and mints (Mentha spp.). In addition to the Lamiaceae family, RA is also present in plants from other families, such as Boraginaceae and Apiaceae.
-Rosmarinic acid is one of the hydroxycinnamic acids, and was initially isolated and purified from the extract of rosemary, a member of mint family (Lamiaceae)
-Its chemical structure allows it to act as a free radical scavenger by donating hydrogen atoms to stabilize ROS and free radicals.
RA’s dual nature as both a phenolic acid and a flavonoid-related compound enables it to chelate metal ions and prevent the formation of free radicals, thus interrupting oxidative chain reactions. It can modulate the activity of enzymes involved in OS, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), underscoring its potential role in preventing oxidative damage at the cellular level.
-divided as rosemary extract, carnosic acid, rosmarinic acid?

Summary:
-Capacity to chelate transition metal ions, particularly ironChelator (Fe2+) and copper (Cu2+)
-RA plus Cu(II)-induced oxidative DNA damage, which causes ROS
-rosmarinic acid (RA) as a potential inhibitor of MARK4↓ (inhibiting to tumor growth, invasion, and metastasis) activity (IC50 = 6.204 µM)

-Note half-life 1.5–2 hours.
BioAv water-soluble, rapid absorbtion
Pathways:
- varying results of ROS up or down in cancer cells. Plus a report of lowering ROS and no effect on Tumor cell viability.
However always seems to lower ROS↓ in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- No indication of Lowering AntiOxidant defense in Cancer Cells:
- Raises AntiOxidant defense in Normal Cells:(and perhaps even in cancer cells) ROS↓, NRF2↑***, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, ERK↓, MARK4↓
- reactivate genes thereby inhibiting cancer cell growth(weak) : HDAC2↓, DNMTs↓weak, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓??, LDHA↓, PFKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells (few references) : CSC↓, Hh↓, GLi1↓,
- Others: PI3K↓, AKT↓, STAT↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Glycolysis, Glycolysis: Click to Expand ⟱
Source:
Type:
Glycolysis is a metabolic pathway that converts glucose into pyruvate, producing a small amount of ATP (energy) in the process. It is a fundamental process for cellular energy production and occurs in the cytoplasm of cells. In normal cells, glycolysis is tightly regulated and is followed by aerobic respiration in the presence of oxygen, which allows for the efficient production of ATP.
In cancer cells, however, glycolysis is often upregulated, even in the presence of oxygen. This phenomenon is known as the Warburg Mutations in oncogenes (like MYC) and tumor suppressor genes (like TP53) can alter metabolic pathways, promoting glycolysis and other anabolic processes that support cell growth.effect.
Acidosis: The increased production of lactate from glycolysis can lead to an acidic microenvironment, which may promote tumor invasion and suppress immune responses.

Glycolysis is a hallmark of malignancy transformation in solid tumor, and LDH is the key enzyme involved in glycolysis.

Pathways:
-GLUTs, HK2, PFK, PK, PKM2, LDH, LDHA, PI3K/AKT/mTOR, AMPK, HIF-1a, c-MYC, p53, SIRT6, HSP90α, GAPDH, HBT, PPP, Lactate Metabolism, ALDO

Natural products targeting glycolytic signaling pathways https://pmc.ncbi.nlm.nih.gov/articles/PMC9631946/
Alkaloids:
-Berberine, Worenine, Sinomenine, NK007, Tetrandrine, N-methylhermeanthidine chloride, Dauricine, Oxymatrine, Matrine, Cryptolepine

Flavonoids: -Oroxyline A, Apigenin, Kaempferol, Quercetin, Wogonin, Baicalein, Chrysin, Genistein, Cardamonin, Phloretin, Morusin, Bavachinin, 4-O-methylalpinumisofavone, Glabridin, Icaritin, LicA, Naringin, IVT, Proanthocyanidin B2, Scutellarin, Hesperidin, Silibinin, Catechin, EGCG, EGC, Xanthohumol.

Non-flavonoid phenolic compounds:
Curcumin, Resveratrol, Gossypol, Tannic acid.

Terpenoids:
-Cantharidin, Dihydroartemisinin, Oleanolic acid, Jolkinolide B, Cynaropicrin, Ursolic Acid, Triptolie, Oridonin, Micheliolide, Betulinic Acid, Beta-escin, Limonin, Bruceine D, Prosapogenin A (PSA), Oleuropein, Dioscin.

Quinones:
-Thymoquinone, Lapachoi, Tan IIA, Emodine, Rhein, Shikonin, Hypericin

Others:
-Perillyl alcohol, HCA, Melatonin, Sulforaphane, Vitamin D3, Mycoepoxydiene, Methyl jasmonate, CK, Phsyciosporin, Gliotoxin, Graviola, Ginsenoside, Beta-Carotene.


Scientific Papers found: Click to Expand⟱
3026- RosA,    Modulatory Effect of Rosmarinic Acid on H2O2-Induced Adaptive Glycolytic Response in Dermal Fibroblasts
- in-vitro, Nor, NA
*ROS↑, H2O2 caused a significant ROS increase in the cells, and pre-treatment with rosmarinic acid (5–50 µM) decreased ROS significantly in the presence of glutathione
*ATP↑, The rosmarinic acid also recovered intracellular ATP and decreased NADPH production via the pentose phosphate pathway.
*NADPH↓,
*HK2↓, (HK-2), phosphofructokinase-2 (PFK-2), and lactate dehydrogenase A (LDHA), were downregulated in cells treated with rosmarinic acid
*PFK2↓,
*LDHA↓,
*GSR↑, GSR), glutathione peroxidase-1 (GPx-1), and peroxiredoxin-1 (Prx-1) and redox protein thioredoxin-1 (Trx-1) were upregulated in treated cells compared to control cells.
*GPx↑,
*Prx↑,
*Trx↑,
*antiOx↑, To sum up, the rosmarinic acid could be used as an antioxidant against H2O2-induced adaptive responses in fibroblasts by modulating glucose metabolism, glycolytic genes, and GSH production.
*GSH↑, The pre-treatment of rosmarinic acid could raise intracellular GSH to protect cells from ROS
*ROS↓, rosmarinic acid pre-treatment reduced the amount of ROS in the fibroblasts upon the addition of H2O2
*GlucoseCon↓, both compounds also decreased glucose consumption and lactate production
*lactateProd↓,
*Glycolysis↝, The results indicated that rosmarinic acid is able to shape cellular glucose utilization, glycolysis, and GSH.
*ATP↑, The rosmarinic acid also recovered intracellular ATP and decreased NADPH production via the pentose phosphate pathway.
*NADPH↓,
*PPP↓,

3036- RosA,    Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells
- in-vitro, CRC, HCT8 - in-vitro, CRC, HCT116 - in-vitro, CRC, LS174T
GlucoseCon↓, RA suppressed glucose consumption and lactate generation in colorectal carcinoma cells;
lactateProd↓,
Hif1a↓, RA inhibited the expression of transcription factor hypoxia-inducible factor-1α (HIF-1α) that affects the glycolytic pathway.
Inflam↓, RA could not only repress proinflammatory cytokines using enzyme-linked immunosorbent assay but it could also suppress microRNAs related to inflammation by real-time PCR
miR-155↓, MiR-155 induces the Warburg effect and is reversed by RA
STAT3↓, RA could inhibit the expression of transcription factor STAT3, and it suppressed the phosphorylation of STAT3
Glycolysis↓, Meanwhile, RA inhibited the expression of transcription factor HIF-1α that affected the glycolytic pathway
IL6↓, RA could significantly regulate miR-155 and in turn alter the IL-6/STAT3 signaling, resulting in the inhibition of inflammation in the tumor micro environment and the eventual anti-Warburg effect
Warburg↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
GlucoseCon↓,1,   Glycolysis↓,1,   Hif1a↓,1,   IL6↓,1,   Inflam↓,1,   lactateProd↓,1,   miR-155↓,1,   STAT3↓,1,   Warburg↓,1,  
Total Targets: 9

Results for Effect on Normal Cells:
antiOx↑,1,   ATP↑,2,   GlucoseCon↓,1,   Glycolysis↝,1,   GPx↑,1,   GSH↑,1,   GSR↑,1,   HK2↓,1,   lactateProd↓,1,   LDHA↓,1,   NADPH↓,2,   PFK2↓,1,   PPP↓,1,   Prx↑,1,   ROS↓,1,   ROS↑,1,   Trx↑,1,  
Total Targets: 17

Scientific Paper Hit Count for: Glycolysis, Glycolysis
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:142  Target#:129  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page