condition found tbRes List
RosA, Rosmarinic acid: Click to Expand ⟱
Features: polyphenol
Polyphenol of many herbs - rosemary, perilla, sage mint and basil. Rosmarinic acid (RA) is predominantly found in a variety of medicinal and culinary herbs, especially those belonging to the Lamiaceae family, including rosemary (Rosmarinus officinalis), basil (Ocimum basilicum), sage (Salvia officinalis), thyme (Thymus vulgaris), and mints (Mentha spp.). In addition to the Lamiaceae family, RA is also present in plants from other families, such as Boraginaceae and Apiaceae.
-Rosmarinic acid is one of the hydroxycinnamic acids, and was initially isolated and purified from the extract of rosemary, a member of mint family (Lamiaceae)
-Its chemical structure allows it to act as a free radical scavenger by donating hydrogen atoms to stabilize ROS and free radicals.
RA’s dual nature as both a phenolic acid and a flavonoid-related compound enables it to chelate metal ions and prevent the formation of free radicals, thus interrupting oxidative chain reactions. It can modulate the activity of enzymes involved in OS, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), underscoring its potential role in preventing oxidative damage at the cellular level.
-divided as rosemary extract, carnosic acid, rosmarinic acid?

Summary:
-Capacity to chelate transition metal ions, particularly ironChelator (Fe2+) and copper (Cu2+)
-RA plus Cu(II)-induced oxidative DNA damage, which causes ROS
-rosmarinic acid (RA) as a potential inhibitor of MARK4↓ (inhibiting to tumor growth, invasion, and metastasis) activity (IC50 = 6.204 µM)

-Note half-life 1.5–2 hours.
BioAv water-soluble, rapid absorbtion
Pathways:
- varying results of ROS up or down in cancer cells. Plus a report of lowering ROS and no effect on Tumor cell viability.
However always seems to lower ROS↓ in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- No indication of Lowering AntiOxidant defense in Cancer Cells:
- Raises AntiOxidant defense in Normal Cells:(and perhaps even in cancer cells) ROS↓, NRF2↑***, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, ERK↓, MARK4↓
- reactivate genes thereby inhibiting cancer cell growth(weak) : HDAC2↓, DNMTs↓weak, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓??, LDHA↓, PFKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells (few references) : CSC↓, Hh↓, GLi1↓,
- Others: PI3K↓, AKT↓, STAT↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ChemoSen, chemo-sensitization: Click to Expand ⟱
Source:
Type:
The effectiveness of chemotherapy by increasing cancer cell sensitivity to the drugs used to treat them, which is known as “chemo-sensitization”.

Chemo-Sensitizers:
-Curcumin
-Resveratrol
-EGCG
-Quercetin
-Genistein
-Berberine
-Piperine: alkaloid from black pepper
-Ginsenosides: active components of ginseng
-Silymarin
-Allicin
-Lycopene
-Ellagic acid
-caffeic acid phenethyl ester
-flavopiridol
-oleandrin
-ursolic acid
-butein
-betulinic acid



Scientific Papers found: Click to Expand⟱
1744- RosA,    Therapeutic Applications of Rosmarinic Acid in Cancer-Chemotherapy-Associated Resistance and Toxicity
- Review, Var, NA
chemoR↓, Recently, several studies have shown that RA is able to reverse cancer resistance to first-line chemotherapeutics
ChemoSideEff↓, as well as play a protective role against toxicity induced by chemotherapy and radiotherapy
RadioS↑, RA decreased radiation-induced ROS with RA by 21% compared to control
ROS↓, mainly due to its scavenger capacity
ChemoSen↑, recent years, evidence has emerged demonstrating the ability of RA to act as a chemosensitizer
BioAv↑, bioavailability of RA have been studied in animal models, revealing rapid absorption in the stomach and intestine
Half-Life↝, Urine was the primary route of RA excretion, with 83% of the total metabolites excreted during the period from 8 to 18 h after RA administration
antiOx↑, RA, well known for its antioxidant properties,
ROS↑, has recently been identified as a potential pro-oxidant in the presence of superoxide anions.
Fenton↑, Studies indicate that RA can facilitate the reduction of Cu (II) to Cu (I) and Fe (III) to Fe (II) leading to Fenton-type reactions that generate reactive hydroxyl radicals (HO˙)
DNAdam↑, These radicals are implicated in DNA damage and induction of apoptosis in cancer cells
Apoptosis↑,
CSCs↓, RA has demonstrated potential in controlling breast cancer stem cells (CSCs)
HH↓, RA inhibits stem-like breast cancer cells by targeting the hedgehog signaling pathway and modulating the Bcl-2/Bax ratio at concentrations of 270 and 810 μM
Bax:Bcl2↑,
MDR1↓, It has been observed to downregulate P-glycoprotein (P-gp) expression and decrease MDR1 gene transcription, thereby reversing MDR.
P-gp↓,
eff↑, RA has been reported to modulate the ADAM17/EGFR/AKT/GSK3β signaling axis in A375 melanoma cells, potentially enhancing synergy with cisplatin
eff↑, RA has demonstrated effectiveness in enhancing chemosensitivity to 5-FU, a commonly used chemotherapy agent for gastrointestinal cancers.
FOXO4↑, By upregulating FOXO4 expression, RA restored the sensitivity of cells to 5-FU
*eff↑, RA has been shown to reduce DOX-induced apoptosis in H9c2 cardiac muscle cells, and reduce intracellular ROS generation through downregulation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), as well as to restore the
*ROS↓,
*JNK↓,
*ERK↓,
*GSH↑, RA has also shown an antioxidant role, which is evidenced by the ability and recovery of levels of glutathione (GSH), hydrogen peroxide (H2O2), and superoxide radicals (O2·), reducing the expression of malondialdehyde
*H2O2↑,
*MDA↓,
*SOD↓, regulating the expression of antioxidant enzymes such as superoxide dismutase (SOD), as well as upregulating catalase heme oxygenase-1, resulting in significantly improved viability
*HO-1↑,
*CardioT↓, The cardioprotective effect of RA
selectivity↑, RA blocked caspases 3 and 9 activation, cytochrome c release, and ROS generation induced by cisplatin in HEI-OC1(normal)cells

1745- RosA,    Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications
- Review, Var, NA - Review, AD, NA
ChemoSideEff↓, updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives
ChemoSen↑,
antiOx↑, RA also showed antioxidant effects and suppressed the activity and expression of matrix metalloproteinase (MMP)− 2,9
MMP2↓,
MMP9↓,
p‑AMPK↑, show that RA prevents metastasis through AMPK phosphorylation and suppresses CRC cell growth
DNMTs↓, RA allegedly suppressed DNA methyltransferase activity in the human breast cancer MCF7 cell line
tumCV↓, A549 lung cancer cells were 50% suppressed by RA, which also prevented COX-2 activity in these cells.
COX2↓,
E-cadherin↑, upregulating E-cadherin expression while downregulating Vimentin and N-cadherin expression, indicating that RA could inhibit hepatocellular carcinoma cells' ability to invade by MMPs and EMT
Vim↓,
N-cadherin↓,
EMT↓,
Casp3↑, The activation of caspase-3 and caspase-9 by RA also prevented the migration and invasion of liver cancer cells
Casp9↓,
ROS↓, In addition to reducing ROS, RA also enhanced GSH synthesis, lowered the expression of MMP-2 and MMP-9
GSH↑,
ERK↓, By inhibiting ERK and Akt activation, RA may stop the progression of colon cancer
Akt↓,
ROS↓, In U937 cells, it has been demonstrated that treatment with RA in concentrations 60 µM suppresses ROS and NF-kB by blocking IκB-α from being phosphorylated and degraded and the nuclear translocation of p50 and p65
NF-kB↓,
p‑IκB↓,
p50↓,
p65↓,
neuroP↑, RA can prevent the pathophysiology of Alzheimer's disease by reducing Aβ aggregation
Dose↝, 60 µM suppresses ROS and NF-kB by blocking IκB-α from being phosphorylated and degraded and the nuclear translocation of p50 and p65

1747- RosA,    Molecular Pathways of Rosmarinic Acid Anticancer Activity in Triple-Negative Breast Cancer Cells: A Literature Review
- Review, BC, MDA-MB-231 - Review, BC, MDA-MB-468
TumCCA↑, Rosmarinic Acid arrests the G0/G1 phase in MDA-MB-231 cells and the S-phase in MDA-MB-468 cells following apoptosis (interruption of the G2/M process).
TNF-α↑, Rosmarinic Acid enhanced the expression of TNF (tumor necrosis factor), GADD45A (growth arrest and DNA damage-inducible 45 alpha), and the proapoptotic BNIP3
GADD45A↑,
BNIP3↑,
survivin↓, IRC5 (Survivin) inhibition appears to be the most important effect of Rosmarinic Acid on MDA-MB-468 cells
Bcl-2↓, Bcl-2 gene is downregulated while the Bax gene expression is increased in the presence of Rosmarinic Acid
BAX↑,
HH↓, The experiments showed that Rosmarinic Acid inhibited Hh signaling genes’ expression in BCSCs.
eff↑, rosemary extract with Rosmarinic Acid and carnosic acid as primary ingredients inhibited cancer cell viability in the ER+, HER2+, and TNBC subtypes (MDA-MB-231 and MDA-MB-468 cells)
ChemoSen↑, The inhibition of NF-κB increases chemotherapy and radiation results
RadioS↑,
TumCP↓, In vitro experiments in MDA-MB-231 cancer cells treated with Rosmarinic Acid have shown that proliferation and migration were significantly attenuated, and eventually, cells were led to apoptosis
TumCMig↓,
Apoptosis↑,
RenoP↑, Rosmarinic Acid decreased the hepatic and renal toxicity induced by methotrexate, as well as the cardiotoxicity of doxorubicin
CardioT↓,

1749- RosA,    Rosmarinic Acid and Related Dietary Supplements: Potential Applications in the Prevention and Treatment of Cancer
- Review, Var, NA
antiOx↑, Rosmarinic acid (RA) is known for its excellent antioxidant properties and is safe and effective in preventing and inhibiting tumors
eff↑, Research has shown that foliar spraying with NO and Si and under Cu stress in S. officinalis elevated total RA content by 2-fold above control leaves.
*toxicity↝, For toxicology, a dose of 169.6 ± 32.4 mg/kg in Kunming mice (6 weeks old) was shown to be lethal, indicating that RA was slightly toxic
*BioAv↑, RA–phospholipid complexes increased oral bioavailability through enhanced intestinal permeability
*ROS↓, RA had the function of scavenging free radicals, including ROS and H2O2, and enhanced antioxidant enzymes and non-enzymic antioxidants
SOD↑, RA enhanced SOD, CAT, and glutathione peroxidase (GPx) activities and reduced lipid peroxidation and cytochrome P450, significantly reducing DMH-induced intestinal polyps in vivo
Catalase↑,
GPx↑,
lipid-P↓,
P450↓,
chemoP↑, RA protected ovaries without attenuating the anti-tumor effect of cisplatin
hepatoP↑, RA improved the hepatorenal toxicity induced by methotrexate
ChemoSen↑, RA acts as a chemosensitizer in a ROS-independent manner to inhibit DNA damage repair, thereby negatively responding to DNA damage

3001- RosA,    Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review
- Review, Var, NA
TumCP↓, including in tumor cell proliferation, apoptosis, metastasis, and inflammation
Apoptosis↑,
TumMeta↓,
Inflam↓,
*antiOx↑, RA is therefore considered to be the strongest antioxidant of all hydroxycinnamic acid derivatives
*AntiAge↑, , it also exerts powerful antimicrobial, anti-inflammatory, antioxidant and even antidepressant, anti-aging effects
*ROS↓, RA and its metabolites can directly neutralize reactive oxygen species (ROS) [10] and thereby reduce the formation of oxidative damage products.
BioAv↑, RA is water-soluble, and according to literature data, the efficacy of secretion of this compound in infusions is about 90%
Dose↝, Accordingly, it is possible to consume approximately 110 mg RA daily, i.e., approximately 1.6 mg/kg for adult men weighing 70 kg.
NRF2↑, liver cancer cell line, HepG2, transfected with plasmid containing ARE-luciferin gene, RA predominantly enhances ARE-luciferin activity and promotes nuclear factor E2-related factor-2 (Nrf2) translocation from cytoplasm to the nucleus
P-gp↑, and also increases MRP2 and P-gp efflux activity along with intercellular ATP level
ATP↑,
MMPs↓, RA concurrently induced necrosis and apoptosis and stimulated MMP dysfunction activated PARP-cleavage and caspase-independent apoptosis.
cl‑PARP↓,
Hif1a↓, inhibits transcription factor hypoxia-inducible factor-1α (HIF-1α) expression
GlucoseCon↓, it also suppressed glucose consumption and lactate production in colorectal cells
lactateProd↓,
Warburg↓, may suppress the Warburg effects through an inflammatory pathway involving activator of transcription-3 (STAT3) and signal transducer of interleukin (IL)-6
TNF-α↓, RA supplementation also reduced tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2) and IL-6 levels, and modulated p65 expression [
COX2↓,
IL6↓,
HDAC2↓, RA induced the cell cycle arrest and apoptosis in prostate cancer cell lines (PCa, PC-3, and DU145) [31]. These effects were mediated through modulation of histone deacetylases expression (HDACs), specifically HDAC2;
GSH↑, RA can also inhibit adhesion, invasion, and migration of Ls 174-T human colon carcinoma cells through enhancing GSH levels and decreasing ROS levels
ROS↓,
ChemoSen↑, RA also enhances chemosensitivity of human resistant gastric carcinoma SGC7901 cells
*BG↓, RA significantly increased insulin index sensitivity and reduced blood glucose, advanced glycation end-products, HbA1c, IL-1β, TNFα, IL-6, p-JNK, P38 mitogen-activated protein kinase (MAPK), and NF-κB levels
*IL1β↓,
*TNF-α↓,
*IL6↓,
*p‑JNK↓,
*p38↓,
*Catalase↑, The reduced activities of CAT, SOD, glutathione S-transferases (GST), and glutathione peroxidase (GPx) and the reduced levels of vitamins C and E, ceruloplasmin, and GSH in plasma of diabetic rats were also significantly recovered by RA application
*SOD↑,
*GSTs↑,
*VitC↑,
*VitE↑,
*GSH↑,
*GutMicro↑, protective effects of RA (30 mg/kg) against hypoglycemia, hyperlipidemia, oxidative stress, and an imbalanced gut microbiota architecture was studied in diabetic rats.
*cardioP↑, Cardioprotective Activity: RA also reduced fasting serum levels of vascular cell adhesion molecule 1 (VCAM-1), inter-cellular adhesion molecule 1 (ICAM-1), plasminogen-activator-inhibitor-1 (PAI-1), and increased GPX and SOD levels
*ROS↓, Finally, in H9c2 cardiac muscle cells, RA inhibited apoptosis by decreasing intracellular ROS generation and recovering mitochondria membrane potential
*MMP↓,
*lipid-P↓, At once, RA suppresses lipid peroxidation (LPO) and ROS generation, whereas in HSC-T6 cells it increases cellular GSH.
*NRF2↑, Additionally, it significantly increases Nrf2 translocation
*hepatoP↑, Hepatoprotective Activity
*neuroP↑, Nephroprotective Activity
*P450↑, RA also reduced CP-produced oxidative stress and amplified cytochrome P450 2E1 (CYP2E1), HO-1, and renal-4-hydroxynonenal expression.
*HO-1↑,
*AntiAge↑, Anti-Aging Activity
*motorD↓, A significantly delays motor neuron dysfunction in paw grip endurance tests,

3002- RosA,    Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols
- Review, Var, NA
TumCG↓, SW480 colon cancer cells and found RE to significantly decrease cell growth at a concentration of 31.25 µg/mL (48 h),
TumCP↓, Cell proliferation was dramatically decreased and cell cycle arrest was induced in HT-29 and SW480 c
TumCCA↑,
ChemoSen↑, RE enhanced the inhibitory effects of the chemotherapeutic drug 5-fluorouracil (5-FU) on proliferation and sensitized 5-FU resistant cells
NRF2↑, HCT116 ↑ Nrf2, ↑ PERK, ↑ sestrin-2, ↑ HO-1, ↑ cleaved-casp 3
PERK↑,
SESN2↑,
HO-1↑,
cl‑Casp3↑,
ROS↑, HT-29 ↑ ROS accumulation, ↑ UPR, ↑ ER-stress
UPR↑,
ER Stress↑,
CHOP↑, HT-29: ↑ ROS levels, ↑ HO-1 and CHOP
HER2/EBBR2↓, SK-BR-3: ↑ FOS levels, ↑ PARP cleavage, ↓ HER2, ↓ ERBB2, ↓ ERα receptor.
ER-α36↓,
PSA↓, LNCaP : ↑ CHOP, ↓ PSA production, ↑ Bax, ↑ cleaved-casp 3, ↓ androgen receptor expression
BAX↑,
AR↓,
P-gp↓, A2780: ↓ P-glyco protein, ↑ cytochrome c gene, ↑ hsp70 gene
Cyt‑c↑,
HSP70/HSPA5↑,
eff↑, This study noted that the rosemary essential oil was more potent than its individual components (α-pinene, β-pinene, 1,8-cineole) when tested alone at the same concentrations.
p‑Akt↓, A549: ↓ p-Akt, ↓ p-mTOR, ↓ p-P70S6K, ↑ PARP cleavage
p‑mTOR↓,
p‑P70S6K↓,
cl‑PARP↑,
eff↑, RE containing 10 µM equivalent of CA, or 10 µM CA alone (96 h) potentiated the ability of vitamin D derivatives to inhibit cell viability and proliferation, induce apoptosis and cell cycle arrest and increase differentiation of WEHI-3BD murine leukem


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   p‑Akt↓,1,   p‑AMPK↑,1,   antiOx↑,3,   Apoptosis↑,3,   AR↓,1,   ATP↑,1,   BAX↑,2,   Bax:Bcl2↑,1,   Bcl-2↓,1,   BioAv↑,2,   BNIP3↑,1,   CardioT↓,1,   Casp3↑,1,   cl‑Casp3↑,1,   Casp9↓,1,   Catalase↑,1,   chemoP↑,1,   chemoR↓,1,   ChemoSen↑,6,   ChemoSideEff↓,2,   CHOP↑,1,   COX2↓,2,   CSCs↓,1,   Cyt‑c↑,1,   DNAdam↑,1,   DNMTs↓,1,   Dose↝,2,   E-cadherin↑,1,   eff↑,6,   EMT↓,1,   ER Stress↑,1,   ER-α36↓,1,   ERK↓,1,   Fenton↑,1,   FOXO4↑,1,   GADD45A↑,1,   GlucoseCon↓,1,   GPx↑,1,   GSH↑,2,   Half-Life↝,1,   HDAC2↓,1,   hepatoP↑,1,   HER2/EBBR2↓,1,   HH↓,2,   Hif1a↓,1,   HO-1↑,1,   HSP70/HSPA5↑,1,   IL6↓,1,   Inflam↓,1,   p‑IκB↓,1,   lactateProd↓,1,   lipid-P↓,1,   MDR1↓,1,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   p‑mTOR↓,1,   N-cadherin↓,1,   neuroP↑,1,   NF-kB↓,1,   NRF2↑,2,   P-gp↓,2,   P-gp↑,1,   P450↓,1,   p50↓,1,   p65↓,1,   p‑P70S6K↓,1,   cl‑PARP↓,1,   cl‑PARP↑,1,   PERK↑,1,   PSA↓,1,   RadioS↑,2,   RenoP↑,1,   ROS↓,4,   ROS↑,2,   selectivity↑,1,   SESN2↑,1,   SOD↑,1,   survivin↓,1,   TNF-α↓,1,   TNF-α↑,1,   TumCCA↑,2,   TumCG↓,1,   TumCMig↓,1,   TumCP↓,3,   tumCV↓,1,   TumMeta↓,1,   UPR↑,1,   Vim↓,1,   Warburg↓,1,  
Total Targets: 91

Results for Effect on Normal Cells:
AntiAge↑,2,   antiOx↑,1,   BG↓,1,   BioAv↑,1,   cardioP↑,1,   CardioT↓,1,   Catalase↑,1,   eff↑,1,   ERK↓,1,   GSH↑,2,   GSTs↑,1,   GutMicro↑,1,   H2O2↑,1,   hepatoP↑,1,   HO-1↑,2,   IL1β↓,1,   IL6↓,1,   JNK↓,1,   p‑JNK↓,1,   lipid-P↓,1,   MDA↓,1,   MMP↓,1,   motorD↓,1,   neuroP↑,1,   NRF2↑,1,   p38↓,1,   P450↑,1,   ROS↓,4,   SOD↓,1,   SOD↑,1,   TNF-α↓,1,   toxicity↝,1,   VitC↑,1,   VitE↑,1,  
Total Targets: 34

Scientific Paper Hit Count for: ChemoSen, chemo-sensitization
6 Rosmarinic acid
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:142  Target#:1106  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page