condition found tbRes List
RosA, Rosmarinic acid: Click to Expand ⟱
Features: polyphenol
Polyphenol of many herbs - rosemary, perilla, sage mint and basil. Rosmarinic acid (RA) is predominantly found in a variety of medicinal and culinary herbs, especially those belonging to the Lamiaceae family, including rosemary (Rosmarinus officinalis), basil (Ocimum basilicum), sage (Salvia officinalis), thyme (Thymus vulgaris), and mints (Mentha spp.). In addition to the Lamiaceae family, RA is also present in plants from other families, such as Boraginaceae and Apiaceae.
-Rosmarinic acid is one of the hydroxycinnamic acids, and was initially isolated and purified from the extract of rosemary, a member of mint family (Lamiaceae)
-Its chemical structure allows it to act as a free radical scavenger by donating hydrogen atoms to stabilize ROS and free radicals.
RA’s dual nature as both a phenolic acid and a flavonoid-related compound enables it to chelate metal ions and prevent the formation of free radicals, thus interrupting oxidative chain reactions. It can modulate the activity of enzymes involved in OS, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), underscoring its potential role in preventing oxidative damage at the cellular level.
-divided as rosemary extract, carnosic acid, rosmarinic acid?

Summary:
-Capacity to chelate transition metal ions, particularly ironChelator (Fe2+) and copper (Cu2+)
-RA plus Cu(II)-induced oxidative DNA damage, which causes ROS
-rosmarinic acid (RA) as a potential inhibitor of MARK4↓ (inhibiting to tumor growth, invasion, and metastasis) activity (IC50 = 6.204 µM)

-Note half-life 1.5–2 hours.
BioAv water-soluble, rapid absorbtion
Pathways:
- varying results of ROS up or down in cancer cells. Plus a report of lowering ROS and no effect on Tumor cell viability.
However always seems to lower ROS↓ in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- No indication of Lowering AntiOxidant defense in Cancer Cells:
- Raises AntiOxidant defense in Normal Cells:(and perhaps even in cancer cells) ROS↓, NRF2↑***, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓">NF-kB, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, ERK↓, MARK4↓
- reactivate genes thereby inhibiting cancer cell growth(weak) : HDAC2↓, DNMTs↓weak, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓??, LDHA↓, PFKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells (few references) : CSC↓, Hh↓, GLi1↓,
- Others: PI3K↓, AKT↓, STAT↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


NF-kB, Nuclear factor kappa B: Click to Expand ⟱
Source: HalifaxProj(inhibit)
Type:
NF-kB signaling
Nuclear factor kappa B (NF-κB) is a transcription factor that plays a crucial role in regulating immune response, inflammation, cell proliferation, and survival.
NF-κB is often found to be constitutively active in many types of cancer cells. This persistent activation can promote tumorigenesis by enhancing cell survival, proliferation, and metastasis.


Scientific Papers found: Click to Expand⟱
3017- RosA,  Per,    Molecular Mechanism of Antioxidant and Anti-Inflammatory Effects of Omega-3 Fatty Acids in Perilla Seed Oil and Rosmarinic Acid Rich Fraction Extracted from Perilla Seed Meal on TNF-α Induced A549 Lung Adenocarcinoma Cells
- in-vitro, Lung, A549
TumCD∅, We found that PSO and RA-RF were not toxic to TNF-α-induced A549 cells.
ROS↓, Both extracts significantly decreased the generation of reactive oxygen species (ROS) in this cell line.
IL1β↓, mRNA expression levels of IL-1β, IL-6, IL-8, TNF-α, and COX-2 were significantly decreased by the treatment of PSO and RA-RF.
IL6↓,
IL8↓,
TNF-α↓,
COX2↓,
SOD2↓, MnSOD, FOXO1, and NF-κB and phosphorylation of JNK were also significantly diminished by PSO and RA-RF treatment
FOXO1↓,
NF-kB↓,
JNK↓,
antiOx↑, PSO and RA-RF act as antioxidants
tumCV∅, PSO and RA-RF had no effect on A549 cell viability.

3018- RosA,    Rosemary (Rosmarinus officinalis L.) polyphenols and inflammatory bowel diseases: Major phytochemicals, functional properties, and health effects
- Review, IBD, NA
*Inflam↓, rosemary polyphenols have the potential to decrease the severity of intestinal inflammation.
*GutMicro↑, including improved gut barrier (increased mucus secretion and tight junction), increased antioxidant enzymes,
*antiOx↑,
*NF-kB↓, inhibiting inflammatory pathways and cytokines (downregulation of NF-κB, NLRP3 inflammasomes, STAT3 and activation of Nrf2), and modulating gut microbiota community
*NLRP3↓,
*STAT3↓,
*NRF2↑,

3015- RosA,  Rad,    Rosmarinic Acid Prevents Radiation-Induced Pulmonary Fibrosis Through Attenuation of ROS/MYPT1/TGFβ1 Signaling Via miR-19b-3p
- in-vivo, Nor, IMR90
*radioP↑, RA reduced X-ray-induced the expression of inflammatory related factors, and the level of reactive oxygen species.
*Inflam↓,
*ROS↓,
*NF-kB↓, RA down-regulated the phosphorylation of nuclear factor kappa-B (NF-κB)
*Rho↓, RA attenuated RhoA/Rock signaling through upregulating miR-19b-3p, leading to the inhibition of fibrosis.
*ROCK1↓,
*other↓, Rosmarinic Acid Inhibits MYPT1 Expression by Up-Regulating miR-19b-3p

3003- RosA,    Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases
- Review, Var, NA - Review, AD, NA - Review, Park, NA
*Inflam↓, anti-inflammatory and antioxidant properties and its roles in various life-threatening conditions, such as cancer, neurodegeneration, diabetes,
*antiOx↑,
*neuroP↑,
*IL6↓, diabetic rat model treated with RA, there is an anti-inflammatory activity reported. This activity is achieved through the inhibition of the expression of various proinflammatory factors, including in IL-6, (IL-1β), tumour
*IL1β↓,
*NF-kB↓, inhibiting NF-κB activity and reducing the production of prostaglandin E2 (PGE2), nitric oxide (NO), and cyclooxygenase-2 (COX-2) in RAW 264.7 cells.
*PGE2↓,
*COX2↓,
*MMP↑, RA inhibits cytotoxicity in tumour patients by maintaining the mitochondrial membrane potential
*memory↑, amyloid β(25–35)-induced AD in rats was treated with RA, which mitigated the impairment of learning and memory disturbance by reducing oxidative stress
*ROS↓,
*Aβ↓, daily consumption of RA diminished the effect of neurotoxicity of Aβ25–35 in mice
*HMGB1↓, SH-SY5Y in vitro and ischaemic diabetic stroke in vivo, and the studies revealed that a 50 mg/kg dose of RA decreased HMGB1 expression
TumCG↓, Rosemary and its extracts have been shown to exhibit potential in inhibiting the growth of cancer cells and the development of tumours in various cancer types, including colon, breast, liver, and stomach cancer
MARK4↓, Another study reported the inhibition of Microtubule affinity regulating kinase 4 (MARK4) by RA
Zeb1↓, Fig 4 BC:
MDM2↓,
BNIP3↑,
ASC↑, Skin Cancer
NLRP3↓,
PI3K↓,
Akt↓,
Casp1↓,
E-cadherin↑, Colon Cancer
STAT3↓,
TLR4↓,
MMP↓,
ICAM-1↓,
AMPK↓,
IL6↑, PC and GC
MMP2↓,
Warburg↓,
Bcl-xL↓, CRC: Apoptosis induction caspases ↑, Bcl-XL ↓, BCL-2 ↓, Induces cell cycle arrest, Inhibition of EMT and invasion, Reduced metastasis
Bcl-2↓,
TumCCA↑,
EMT↓,
TumMeta↓,
mTOR↓, Inhibits mTOR/S6K1 pathway to induce apoptosis in cervical cancer
HSP27↓, Glioma ↓ expression of HSP27 ↑ caspase-3
Casp3↑,
GlucoseCon↓, GC: Inhibited the signs of the Warburg effect, such as high glucose consumption/anaerobic glycolysis, lactate production/cell acidosis, by inhibiting the IL-6/STAT3 pathway
lactateProd↓,
VEGF↓, ↓ angiogenic factors (VEGF) and phosphorylation of p65
p‑p65↓,
GIT1↓, PC: Increased degradation of Gli1
Foxm1↓, inhibiting FOXM1
cycD1↓, RA treatment in CRC cells inhibited proliferation-induced cell cycle arrest of the G0/G1 phase by reducing the cyclin D1 and CDK4 levels,
CDK4↓,
MMP9↓, CRC cells, and it led to a decrease in the expressions of matrix metalloproteinase (MMP)-2 and MMP-9.
HDAC2↓, PCa cells through the inhibition of HDAC2

1745- RosA,    Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications
- Review, Var, NA - Review, AD, NA
ChemoSideEff↓, updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives
ChemoSen↑,
antiOx↑, RA also showed antioxidant effects and suppressed the activity and expression of matrix metalloproteinase (MMP)− 2,9
MMP2↓,
MMP9↓,
p‑AMPK↑, show that RA prevents metastasis through AMPK phosphorylation and suppresses CRC cell growth
DNMTs↓, RA allegedly suppressed DNA methyltransferase activity in the human breast cancer MCF7 cell line
tumCV↓, A549 lung cancer cells were 50% suppressed by RA, which also prevented COX-2 activity in these cells.
COX2↓,
E-cadherin↑, upregulating E-cadherin expression while downregulating Vimentin and N-cadherin expression, indicating that RA could inhibit hepatocellular carcinoma cells' ability to invade by MMPs and EMT
Vim↓,
N-cadherin↓,
EMT↓,
Casp3↑, The activation of caspase-3 and caspase-9 by RA also prevented the migration and invasion of liver cancer cells
Casp9↓,
ROS↓, In addition to reducing ROS, RA also enhanced GSH synthesis, lowered the expression of MMP-2 and MMP-9
GSH↑,
ERK↓, By inhibiting ERK and Akt activation, RA may stop the progression of colon cancer
Akt↓,
ROS↓, In U937 cells, it has been demonstrated that treatment with RA in concentrations 60 µM suppresses ROS and NF-kB by blocking IκB-α from being phosphorylated and degraded and the nuclear translocation of p50 and p65
NF-kB↓,
p‑IκB↓,
p50↓,
p65↓,
neuroP↑, RA can prevent the pathophysiology of Alzheimer's disease by reducing Aβ aggregation
Dose↝, 60 µM suppresses ROS and NF-kB by blocking IκB-α from being phosphorylated and degraded and the nuclear translocation of p50 and p65

1746- RosA,    Rosmarinic acid sensitizes cell death through suppression of TNF-α-induced NF-κB activation and ROS generation in human leukemia U937 cells
- in-vitro, AML, U937
TNF-α↓, Rosmarinic acid (RA), a naturally occurring polyphenol flavonoid, has been reported to inhibit TNF-α-induced NF-κB activation in human dermal fibroblasts.
ROS↓, RA treatment significantly sensitizes TNF-α-induced apoptosis in human leukemia U937 cells through the suppression of nuclear transcription factor-kappaB (NF-κB) and reactive oxygen species (ROS).
Casp↑, Activation of caspases in response to TNF-α was markedly increased by RA treatment
NF-kB↓, RA also suppressed NF-κB activation through inhibition of phosphorylation and degradation of IκBα, and nuclear translocation of p50 and p65
IκB↓,
p50↓,
p65↓,
IAP1↓, This inhibition was correlated with suppression of NF-κB-dependent anti-apoptotic proteins (IAP-1, IAP-2, and XIAP)
IAP2↓,
XIAP↓,
Apoptosis↑, These results demonstrated that RA inhibits TNF-α-induced ROS generation and NF-κB activation, and enhances TNF-α-induced apoptosis.

3006- RosA,    Rosmarinic acid attenuates glioblastoma cells and spheroids’ growth and EMT/stem-like state by PTEN/PI3K/AKT downregulation and ERK-induced apoptosis
- in-vitro, GBM, U87MG - in-vitro, GBM, LN229
TumCG↓, Rosmarinic acid (RA) reduced the glioma growth and motility in 2D- and 3D-cultures
EMT↓, RA suppressed epithelial-mesenchymal transition and stem-cell property in spheroids.
SIRT1↓, RA downregulated SIRT1/FOXO1/NF-κB axis independently of p53 or PTEN function.
FOXO1↓,
NF-kB↓,
angioG↓, RA dose-dependently reduced angiogenesis and intracellular ROS levels, suppressed glioma growth,
ROS↓,
PTEN↓, RA also inhibited the PTEN/PI3K/AKT pathway in U-87MG cells.
PI3K↓,
Akt↓,
*Inflam↓, anti-inflammatory, antimicrobial, cardioprotective, hepatoprotective, neuroprotective, antidiabetic, and especially anticancer effects (
*cardioP↑,
*hepatoP↑,
*neuroP↑,
Warburg↓, suppresses Warburg effect

3007- RosA,    Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action
- Review, NA, NA
*ROS↓, antioxidant properties as a ROS scavenger and lipid peroxidation inhibitor, anti-inflammatory, neuroprotective and antiangiogenic among others.
*lipid-P↓,
*Inflam↓,
*neuroP↑,
*angioG↓,
*eff↑, The hepatoprotective effects of RA alone and in combination with caffeic acid (CA) was reported in t-BHP-induced oxidative liver damage
*AST↓, significant reduction of indicators of hepatic toxicity, such as AST, ALT, GSSG, lipid peroxidation.
*ALAT↓,
*GSSG↓,
*eNOS↓, It also reduced the liver content of eNOS/iNOS and NO, attenuated NF-κB activation
*iNOS↓,
*NO↓,
*NF-kB↓,
*MMP2↓, It inhibited MMP-2 activity and suppressed ROS generation and lipid peroxidation.
*MDA↓, It also decreased malondialdehyde (MDA) and TNF-α levels while increasing GSH levels as well as SOD and GSH-Px activities in the livers and kidneys.
*TNF-α↓,
*GSH↑,
*SOD↑,
*IL6↓, RA decreased the hepatic level of IL-6, TNF-Alpha, and PGE2, as well as the activity of COX-2 It also decreased hepatic RAGE and sorbitol levels, and GLO-1 activity
*PGE2↓,
*COX2↓,
*mTOR↑, In the study, it was observed that RA stimulated hepatocyte proliferation. Specifically activated the mTOR signaling pathway during liver regeneration and rescued PH-impaired liver functions

3009- RosA,    Rosmarinic acid sensitizes cell death through suppression of TNF-alpha-induced NF-kappaB activation and ROS generation in human leukemia U937 cells
- in-vitro, AML, U937
TNF-α↓, Rosmarinic acid (RA), a naturally occurring polyphenol flavonoid, has been reported to inhibit TNF-alpha-induced NF-kappaB activation in human dermal fibroblasts
NF-kB↓, RA treatment significantly sensitizes TNF-alpha-induced apoptosis in human leukemia U937 cells through the suppression of nuclear transcription factor-kappaB (NF-kappaB) and reactive oxygen species (ROS).
ROS↓,
IAP1↓, This inhibition was correlated with suppression of NF-kappaB-dependent anti-apoptotic proteins (IAP-1, IAP-2, and XIAP).
IAP2↓,
XIAP↓,

3012- RosA,  Rad,    Rosmarinic Acid Prevents Radiation-Induced Pulmonary Fibrosis Through Attenuation of ROSMYPT1TGFβ1 Signaling Via miR-19b-3p
- in-vitro, Nor, IMR90
*Inflam↓, RA reduced X-ray-induced the expression of inflammatory related factors, and the level of reactive oxygen species.
*ROS↓,
*p‑NF-kB↓, RA down-regulated the phosphorylation of nuclear factor kappa-B (NF-κB).
*Rho↓, RA attenuated RhoA/Rock signaling through upregulating miR-19b-3p, leading to the inhibition of fibrosis
*ROCK1↓,
*radioP↑, RA attenuated radiation- induced damage by its capacity to relieve inflammation and regulate inflammatory factors.
*MCP1↓, RA treatment reduced RNA levels of NF-kB target gene, including MCP-1, RANTES, and ICAM-1
*RANTES↓,
*ICAM-1↓,
*PGC1A↑, Western blot analysis showed that RA promoted the expression of PGC-1a and reduced the expression of NOX-4, this evidence further suggested that RA inhibits the generation of ROS
*NOX4↓,
*Dose↝, RA exerted strongly protective effects in the X-ray-induced inflammation at doses of 60 mg/kg, and treat- ment with a higher dose (120 mg/kg) do not enhance its anti- inflammatory effect.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 10

Results for Effect on Cancer/Diseased Cells:
Akt↓,3,   AMPK↓,1,   p‑AMPK↑,1,   angioG↓,1,   antiOx↑,2,   Apoptosis↑,1,   ASC↑,1,   Bcl-2↓,1,   Bcl-xL↓,1,   BNIP3↑,1,   Casp↑,1,   Casp1↓,1,   Casp3↑,2,   Casp9↓,1,   CDK4↓,1,   ChemoSen↑,1,   ChemoSideEff↓,1,   COX2↓,2,   cycD1↓,1,   DNMTs↓,1,   Dose↝,1,   E-cadherin↑,2,   EMT↓,3,   ERK↓,1,   Foxm1↓,1,   FOXO1↓,2,   GIT1↓,1,   GlucoseCon↓,1,   GSH↑,1,   HDAC2↓,1,   HSP27↓,1,   IAP1↓,2,   IAP2↓,2,   ICAM-1↓,1,   IL1β↓,1,   IL6↓,1,   IL6↑,1,   IL8↓,1,   IκB↓,1,   p‑IκB↓,1,   JNK↓,1,   lactateProd↓,1,   MARK4↓,1,   MDM2↓,1,   MMP↓,1,   MMP2↓,2,   MMP9↓,2,   mTOR↓,1,   N-cadherin↓,1,   neuroP↑,1,   NF-kB↓,5,   NLRP3↓,1,   p50↓,2,   p65↓,2,   p‑p65↓,1,   PI3K↓,2,   PTEN↓,1,   ROS↓,6,   SIRT1↓,1,   SOD2↓,1,   STAT3↓,1,   TLR4↓,1,   TNF-α↓,3,   TumCCA↑,1,   TumCD∅,1,   TumCG↓,2,   tumCV↓,1,   tumCV∅,1,   TumMeta↓,1,   VEGF↓,1,   Vim↓,1,   Warburg↓,2,   XIAP↓,2,   Zeb1↓,1,  
Total Targets: 74

Results for Effect on Normal Cells:
ALAT↓,1,   angioG↓,1,   antiOx↑,2,   AST↓,1,   Aβ↓,1,   cardioP↑,1,   COX2↓,2,   Dose↝,1,   eff↑,1,   eNOS↓,1,   GSH↑,1,   GSSG↓,1,   GutMicro↑,1,   hepatoP↑,1,   HMGB1↓,1,   ICAM-1↓,1,   IL1β↓,1,   IL6↓,2,   Inflam↓,6,   iNOS↓,1,   lipid-P↓,1,   MCP1↓,1,   MDA↓,1,   memory↑,1,   MMP↑,1,   MMP2↓,1,   mTOR↑,1,   neuroP↑,3,   NF-kB↓,4,   p‑NF-kB↓,1,   NLRP3↓,1,   NO↓,1,   NOX4↓,1,   NRF2↑,1,   other↓,1,   PGC1A↑,1,   PGE2↓,2,   radioP↑,2,   RANTES↓,1,   Rho↓,2,   ROCK1↓,2,   ROS↓,4,   SOD↑,1,   STAT3↓,1,   TNF-α↓,1,  
Total Targets: 45

Scientific Paper Hit Count for: NF-kB, Nuclear factor kappa B
10 Rosmarinic acid
2 Radiotherapy/Radiation
1 Perilla
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:142  Target#:214  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page