condition found tbRes List
RosA, Rosmarinic acid: Click to Expand ⟱
Features: polyphenol
Polyphenol of many herbs - rosemary, perilla, sage mint and basil. Rosmarinic acid (RA) is predominantly found in a variety of medicinal and culinary herbs, especially those belonging to the Lamiaceae family, including rosemary (Rosmarinus officinalis), basil (Ocimum basilicum), sage (Salvia officinalis), thyme (Thymus vulgaris), and mints (Mentha spp.). In addition to the Lamiaceae family, RA is also present in plants from other families, such as Boraginaceae and Apiaceae.
-Rosmarinic acid is one of the hydroxycinnamic acids, and was initially isolated and purified from the extract of rosemary, a member of mint family (Lamiaceae)
-Its chemical structure allows it to act as a free radical scavenger by donating hydrogen atoms to stabilize ROS and free radicals.
RA’s dual nature as both a phenolic acid and a flavonoid-related compound enables it to chelate metal ions and prevent the formation of free radicals, thus interrupting oxidative chain reactions. It can modulate the activity of enzymes involved in OS, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), underscoring its potential role in preventing oxidative damage at the cellular level.
-divided as rosemary extract, carnosic acid, rosmarinic acid?

Summary:
-Capacity to chelate transition metal ions, particularly ironChelator (Fe2+) and copper (Cu2+)
-RA plus Cu(II)-induced oxidative DNA damage, which causes ROS
-rosmarinic acid (RA) as a potential inhibitor of MARK4↓ (inhibiting to tumor growth, invasion, and metastasis) activity (IC50 = 6.204 µM)

-Note half-life 1.5–2 hours.
BioAv water-soluble, rapid absorbtion
Pathways:
- varying results of ROS up or down in cancer cells. Plus a report of lowering ROS and no effect on Tumor cell viability.
However always seems to lower ROS↓ in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- No indication of Lowering AntiOxidant defense in Cancer Cells:
- Raises AntiOxidant defense in Normal Cells:(and perhaps even in cancer cells) ROS↓, NRF2↑***, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, ERK↓, MARK4↓
- reactivate genes thereby inhibiting cancer cell growth(weak) : HDAC2↓, DNMTs↓weak, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓??, LDHA↓, PFKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells (few references) : CSC↓, Hh↓, GLi1↓,
- Others: PI3K↓, AKT↓, STAT↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


JNK, c-Jun N-terminal kinase (JNK): Click to Expand ⟱
Source:
Type:
JNK acts synergistically with NF-κB, JAK/STAT, and other signaling molecules to exert a survival function. Janus signaling promotes cancer cell survival.
JNK, or c-Jun N-terminal kinase, is a member of the mitogen-activated protein kinase (MAPK) family. It plays a crucial role in various cellular processes, including cell proliferation, differentiation, and apoptosis (programmed cell death). JNK is activated in response to various stress signals, such as UV radiation, oxidative stress, and inflammatory cytokines.
JNK activation can promote apoptosis in cancer cells, acting as a tumor suppressor. However, in other contexts, it can promote cell survival and proliferation, contributing to tumor progression.

JNK is often unregulated in cancers, leading to increased cancer cell proliferation, survival, and resistance to apoptosis. This activation is typically associated with poor prognosis and aggressive tumor behavior.


Scientific Papers found: Click to Expand⟱
3017- RosA,  Per,    Molecular Mechanism of Antioxidant and Anti-Inflammatory Effects of Omega-3 Fatty Acids in Perilla Seed Oil and Rosmarinic Acid Rich Fraction Extracted from Perilla Seed Meal on TNF-α Induced A549 Lung Adenocarcinoma Cells
- in-vitro, Lung, A549
TumCD∅, We found that PSO and RA-RF were not toxic to TNF-α-induced A549 cells.
ROS↓, Both extracts significantly decreased the generation of reactive oxygen species (ROS) in this cell line.
IL1β↓, mRNA expression levels of IL-1β, IL-6, IL-8, TNF-α, and COX-2 were significantly decreased by the treatment of PSO and RA-RF.
IL6↓,
IL8↓,
TNF-α↓,
COX2↓,
SOD2↓, MnSOD, FOXO1, and NF-κB and phosphorylation of JNK were also significantly diminished by PSO and RA-RF treatment
FOXO1↓,
NF-kB↓,
JNK↓,
antiOx↑, PSO and RA-RF act as antioxidants
tumCV∅, PSO and RA-RF had no effect on A549 cell viability.

3021- RosA,    Rosmarinic acid ameliorates septic-associated mortality and lung injury in mice via GRP78/IRE1α/JNK pathway
- in-vivo, Sepsis, NA
*eff↑, RA (40 mg/kg) significantly decreased mortality and alleviated septic-associated lung injury.
*SOD↑, RA significantly reversed LPS induced decrease in serum T-aoc level and superoxide dismutase (SOD) activity, and increase in malondialdehyde (MDA) activity.
*MDA↓,
*GRP78/BiP↓, LPS induced activation of GRP78/IRE1α/JNK pathway was suppressed by RA pretreatment.
*IRE1↓,
*JNK↓,
*Sepsis↓,

3023- RosA,    Rosmarinic acid alleviates septic acute respiratory distress syndrome in mice by suppressing the bronchial epithelial RAS-mediated ferroptosis
- in-vivo, Sepsis, NA
*GPx4↑, RA notably inhibited the infiltration into the lungs of neutrophils and monocytes with increased amounts of GPX4 and ACE2 proteins, lung function improvement,
*Inflam↓, decreased inflammatory cytokines levels and ER stress in LPS-induced ARDS in mice.
*ER Stress↓,
*Ferroptosis↓, the anti-ferroptosis effect of RA in LPS-induced septic
*Sepsis↓,
*GRP78/BiP↓, Previously, we reported that RA markedly ameliorated septic-associated mortality and lung injury via inhibiting GRP78/IRE1α/JNK pathway-mediated ERS
*IRE1↓,
JNK↓,

1744- RosA,    Therapeutic Applications of Rosmarinic Acid in Cancer-Chemotherapy-Associated Resistance and Toxicity
- Review, Var, NA
chemoR↓, Recently, several studies have shown that RA is able to reverse cancer resistance to first-line chemotherapeutics
ChemoSideEff↓, as well as play a protective role against toxicity induced by chemotherapy and radiotherapy
RadioS↑, RA decreased radiation-induced ROS with RA by 21% compared to control
ROS↓, mainly due to its scavenger capacity
ChemoSen↑, recent years, evidence has emerged demonstrating the ability of RA to act as a chemosensitizer
BioAv↑, bioavailability of RA have been studied in animal models, revealing rapid absorption in the stomach and intestine
Half-Life↝, Urine was the primary route of RA excretion, with 83% of the total metabolites excreted during the period from 8 to 18 h after RA administration
antiOx↑, RA, well known for its antioxidant properties,
ROS↑, has recently been identified as a potential pro-oxidant in the presence of superoxide anions.
Fenton↑, Studies indicate that RA can facilitate the reduction of Cu (II) to Cu (I) and Fe (III) to Fe (II) leading to Fenton-type reactions that generate reactive hydroxyl radicals (HO˙)
DNAdam↑, These radicals are implicated in DNA damage and induction of apoptosis in cancer cells
Apoptosis↑,
CSCs↓, RA has demonstrated potential in controlling breast cancer stem cells (CSCs)
HH↓, RA inhibits stem-like breast cancer cells by targeting the hedgehog signaling pathway and modulating the Bcl-2/Bax ratio at concentrations of 270 and 810 μM
Bax:Bcl2↑,
MDR1↓, It has been observed to downregulate P-glycoprotein (P-gp) expression and decrease MDR1 gene transcription, thereby reversing MDR.
P-gp↓,
eff↑, RA has been reported to modulate the ADAM17/EGFR/AKT/GSK3β signaling axis in A375 melanoma cells, potentially enhancing synergy with cisplatin
eff↑, RA has demonstrated effectiveness in enhancing chemosensitivity to 5-FU, a commonly used chemotherapy agent for gastrointestinal cancers.
FOXO4↑, By upregulating FOXO4 expression, RA restored the sensitivity of cells to 5-FU
*eff↑, RA has been shown to reduce DOX-induced apoptosis in H9c2 cardiac muscle cells, and reduce intracellular ROS generation through downregulation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), as well as to restore the
*ROS↓,
*JNK↓,
*ERK↓,
*GSH↑, RA has also shown an antioxidant role, which is evidenced by the ability and recovery of levels of glutathione (GSH), hydrogen peroxide (H2O2), and superoxide radicals (O2·), reducing the expression of malondialdehyde
*H2O2↑,
*MDA↓,
*SOD↓, regulating the expression of antioxidant enzymes such as superoxide dismutase (SOD), as well as upregulating catalase heme oxygenase-1, resulting in significantly improved viability
*HO-1↑,
*CardioT↓, The cardioprotective effect of RA
selectivity↑, RA blocked caspases 3 and 9 activation, cytochrome c release, and ROS generation induced by cisplatin in HEI-OC1(normal)cells

3001- RosA,    Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review
- Review, Var, NA
TumCP↓, including in tumor cell proliferation, apoptosis, metastasis, and inflammation
Apoptosis↑,
TumMeta↓,
Inflam↓,
*antiOx↑, RA is therefore considered to be the strongest antioxidant of all hydroxycinnamic acid derivatives
*AntiAge↑, , it also exerts powerful antimicrobial, anti-inflammatory, antioxidant and even antidepressant, anti-aging effects
*ROS↓, RA and its metabolites can directly neutralize reactive oxygen species (ROS) [10] and thereby reduce the formation of oxidative damage products.
BioAv↑, RA is water-soluble, and according to literature data, the efficacy of secretion of this compound in infusions is about 90%
Dose↝, Accordingly, it is possible to consume approximately 110 mg RA daily, i.e., approximately 1.6 mg/kg for adult men weighing 70 kg.
NRF2↑, liver cancer cell line, HepG2, transfected with plasmid containing ARE-luciferin gene, RA predominantly enhances ARE-luciferin activity and promotes nuclear factor E2-related factor-2 (Nrf2) translocation from cytoplasm to the nucleus
P-gp↑, and also increases MRP2 and P-gp efflux activity along with intercellular ATP level
ATP↑,
MMPs↓, RA concurrently induced necrosis and apoptosis and stimulated MMP dysfunction activated PARP-cleavage and caspase-independent apoptosis.
cl‑PARP↓,
Hif1a↓, inhibits transcription factor hypoxia-inducible factor-1α (HIF-1α) expression
GlucoseCon↓, it also suppressed glucose consumption and lactate production in colorectal cells
lactateProd↓,
Warburg↓, may suppress the Warburg effects through an inflammatory pathway involving activator of transcription-3 (STAT3) and signal transducer of interleukin (IL)-6
TNF-α↓, RA supplementation also reduced tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2) and IL-6 levels, and modulated p65 expression [
COX2↓,
IL6↓,
HDAC2↓, RA induced the cell cycle arrest and apoptosis in prostate cancer cell lines (PCa, PC-3, and DU145) [31]. These effects were mediated through modulation of histone deacetylases expression (HDACs), specifically HDAC2;
GSH↑, RA can also inhibit adhesion, invasion, and migration of Ls 174-T human colon carcinoma cells through enhancing GSH levels and decreasing ROS levels
ROS↓,
ChemoSen↑, RA also enhances chemosensitivity of human resistant gastric carcinoma SGC7901 cells
*BG↓, RA significantly increased insulin index sensitivity and reduced blood glucose, advanced glycation end-products, HbA1c, IL-1β, TNFα, IL-6, p-JNK, P38 mitogen-activated protein kinase (MAPK), and NF-κB levels
*IL1β↓,
*TNF-α↓,
*IL6↓,
*p‑JNK↓,
*p38↓,
*Catalase↑, The reduced activities of CAT, SOD, glutathione S-transferases (GST), and glutathione peroxidase (GPx) and the reduced levels of vitamins C and E, ceruloplasmin, and GSH in plasma of diabetic rats were also significantly recovered by RA application
*SOD↑,
*GSTs↑,
*VitC↑,
*VitE↑,
*GSH↑,
*GutMicro↑, protective effects of RA (30 mg/kg) against hypoglycemia, hyperlipidemia, oxidative stress, and an imbalanced gut microbiota architecture was studied in diabetic rats.
*cardioP↑, Cardioprotective Activity: RA also reduced fasting serum levels of vascular cell adhesion molecule 1 (VCAM-1), inter-cellular adhesion molecule 1 (ICAM-1), plasminogen-activator-inhibitor-1 (PAI-1), and increased GPX and SOD levels
*ROS↓, Finally, in H9c2 cardiac muscle cells, RA inhibited apoptosis by decreasing intracellular ROS generation and recovering mitochondria membrane potential
*MMP↓,
*lipid-P↓, At once, RA suppresses lipid peroxidation (LPO) and ROS generation, whereas in HSC-T6 cells it increases cellular GSH.
*NRF2↑, Additionally, it significantly increases Nrf2 translocation
*hepatoP↑, Hepatoprotective Activity
*neuroP↑, Nephroprotective Activity
*P450↑, RA also reduced CP-produced oxidative stress and amplified cytochrome P450 2E1 (CYP2E1), HO-1, and renal-4-hydroxynonenal expression.
*HO-1↑,
*AntiAge↑, Anti-Aging Activity
*motorD↓, A significantly delays motor neuron dysfunction in paw grip endurance tests,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
antiOx↑,2,   Apoptosis↑,2,   ATP↑,1,   Bax:Bcl2↑,1,   BioAv↑,2,   chemoR↓,1,   ChemoSen↑,2,   ChemoSideEff↓,1,   COX2↓,2,   CSCs↓,1,   DNAdam↑,1,   Dose↝,1,   eff↑,2,   Fenton↑,1,   FOXO1↓,1,   FOXO4↑,1,   GlucoseCon↓,1,   GSH↑,1,   Half-Life↝,1,   HDAC2↓,1,   HH↓,1,   Hif1a↓,1,   IL1β↓,1,   IL6↓,2,   IL8↓,1,   Inflam↓,1,   JNK↓,2,   lactateProd↓,1,   MDR1↓,1,   MMPs↓,1,   NF-kB↓,1,   NRF2↑,1,   P-gp↓,1,   P-gp↑,1,   cl‑PARP↓,1,   RadioS↑,1,   ROS↓,3,   ROS↑,1,   selectivity↑,1,   SOD2↓,1,   TNF-α↓,2,   TumCD∅,1,   TumCP↓,1,   tumCV∅,1,   TumMeta↓,1,   Warburg↓,1,  
Total Targets: 46

Results for Effect on Normal Cells:
AntiAge↑,2,   antiOx↑,1,   BG↓,1,   cardioP↑,1,   CardioT↓,1,   Catalase↑,1,   eff↑,2,   ER Stress↓,1,   ERK↓,1,   Ferroptosis↓,1,   GPx4↑,1,   GRP78/BiP↓,2,   GSH↑,2,   GSTs↑,1,   GutMicro↑,1,   H2O2↑,1,   hepatoP↑,1,   HO-1↑,2,   IL1β↓,1,   IL6↓,1,   Inflam↓,1,   IRE1↓,2,   JNK↓,2,   p‑JNK↓,1,   lipid-P↓,1,   MDA↓,2,   MMP↓,1,   motorD↓,1,   neuroP↑,1,   NRF2↑,1,   p38↓,1,   P450↑,1,   ROS↓,3,   Sepsis↓,2,   SOD↓,1,   SOD↑,2,   TNF-α↓,1,   VitC↑,1,   VitE↑,1,  
Total Targets: 39

Scientific Paper Hit Count for: JNK, c-Jun N-terminal kinase (JNK)
5 Rosmarinic acid
1 Perilla
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:142  Target#:168  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page