condition found
Features: polyphenol |
Polyphenol of many herbs - rosemary, perilla, sage mint and basil. Rosmarinic acid (RA) is predominantly found in a variety of medicinal and culinary herbs, especially those belonging to the Lamiaceae family, including rosemary (Rosmarinus officinalis), basil (Ocimum basilicum), sage (Salvia officinalis), thyme (Thymus vulgaris), and mints (Mentha spp.). In addition to the Lamiaceae family, RA is also present in plants from other families, such as Boraginaceae and Apiaceae. -Rosmarinic acid is one of the hydroxycinnamic acids, and was initially isolated and purified from the extract of rosemary, a member of mint family (Lamiaceae) -Its chemical structure allows it to act as a free radical scavenger by donating hydrogen atoms to stabilize ROS and free radicals. RA’s dual nature as both a phenolic acid and a flavonoid-related compound enables it to chelate metal ions and prevent the formation of free radicals, thus interrupting oxidative chain reactions. It can modulate the activity of enzymes involved in OS, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), underscoring its potential role in preventing oxidative damage at the cellular level. -divided as rosemary extract, carnosic acid, rosmarinic acid? Summary: -Capacity to chelate transition metal ions, particularly ironChelator (Fe2+) and copper (Cu2+) -RA plus Cu(II)-induced oxidative DNA damage, which causes ROS -rosmarinic acid (RA) as a potential inhibitor of MARK4↓ (inhibiting to tumor growth, invasion, and metastasis) activity (IC50 = 6.204 µM) -Note half-life 1.5–2 hours. BioAv water-soluble, rapid absorbtion Pathways: - varying results of ROS up or down in cancer cells. Plus a report of lowering ROS and no effect on Tumor cell viability. However always seems to lower ROS↓ in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, - No indication of Lowering AntiOxidant defense in Cancer Cells: - Raises AntiOxidant defense in Normal Cells:(and perhaps even in cancer cells) ROS↓, NRF2↑***, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, ERK↓, MARK4↓ - reactivate genes thereby inhibiting cancer cell growth(weak) : HDAC2↓, DNMTs↓weak, P53↑, HSP↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓??, LDHA↓, PFKs↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓, - inhibits Cancer Stem Cells (few references) : CSC↓, Hh↓, GLi1↓, - Others: PI3K↓, AKT↓, STAT↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Biological process in which epithelial cells lose their cell polarity and cell-cell adhesion properties and gain mesenchymal traits, such as increased motility and invasiveness. This process is pivotal during embryogenesis and wound healing. Hh signaling pathway is able to regulate the EMT. Snail, E-cadherin and N-cadherin, key components of EMT; EMT-related factors, E-cadherin, N-cadherin, vimentin; The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin. EMT is regulated by various signaling pathways, including TGF-β, Wnt, Notch, and Hedgehog pathways. Transcription factors such as Snail, Slug, Twist, and ZEB play critical roles in repressing epithelial markers (like E-cadherin) and promoting mesenchymal markers (like N-cadherin and vimentin). EMT is associated with increased tumor aggressiveness, enhanced migratory and invasive capabilities, and resistance to apoptosis. |
3027- | RosA,  |   | Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway |
- | in-vitro, | HCC, | SMMC-7721 cell |
3037- | RosA,  |   | Unraveling rosmarinic acid anticancer mechanisms in oral cancer malignant transformation |
- | in-vitro, | Oral, | SCC9 | - | in-vitro, | Oral, | HSC3 |
3003- | RosA,  |   | Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases |
- | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
1745- | RosA,  |   | Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications |
- | Review, | Var, | NA | - | Review, | AD, | NA |
3006- | RosA,  |   | Rosmarinic acid attenuates glioblastoma cells and spheroids’ growth and EMT/stem-like state by PTEN/PI3K/AKT downregulation and ERK-induced apoptosis |
- | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | LN229 |
3010- | RosA,  |   | Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validation |
- | in-vitro, | Lung, | A549 | - | in-vivo, | NA, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:142 Target#:96 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid