condition found tbRes List
RosA, Rosmarinic acid: Click to Expand ⟱
Features: polyphenol
Polyphenol of many herbs - rosemary, perilla, sage mint and basil. Rosmarinic acid (RA) is predominantly found in a variety of medicinal and culinary herbs, especially those belonging to the Lamiaceae family, including rosemary (Rosmarinus officinalis), basil (Ocimum basilicum), sage (Salvia officinalis), thyme (Thymus vulgaris), and mints (Mentha spp.). In addition to the Lamiaceae family, RA is also present in plants from other families, such as Boraginaceae and Apiaceae.
-Rosmarinic acid is one of the hydroxycinnamic acids, and was initially isolated and purified from the extract of rosemary, a member of mint family (Lamiaceae)
-Its chemical structure allows it to act as a free radical scavenger by donating hydrogen atoms to stabilize ROS and free radicals.
RA’s dual nature as both a phenolic acid and a flavonoid-related compound enables it to chelate metal ions and prevent the formation of free radicals, thus interrupting oxidative chain reactions. It can modulate the activity of enzymes involved in OS, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), underscoring its potential role in preventing oxidative damage at the cellular level.
-divided as rosemary extract, carnosic acid, rosmarinic acid?

Summary:
-Capacity to chelate transition metal ions, particularly ironChelator (Fe2+) and copper (Cu2+)
-RA plus Cu(II)-induced oxidative DNA damage, which causes ROS
-rosmarinic acid (RA) as a potential inhibitor of MARK4↓ (inhibiting to tumor growth, invasion, and metastasis) activity (IC50 = 6.204 µM)

-Note half-life 1.5–2 hours.
BioAv water-soluble, rapid absorbtion
Pathways:
- varying results of ROS up or down in cancer cells. Plus a report of lowering ROS and no effect on Tumor cell viability.
However always seems to lower ROS↓ in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓,
- No indication of Lowering AntiOxidant defense in Cancer Cells:
- Raises AntiOxidant defense in Normal Cells:(and perhaps even in cancer cells) ROS↓, NRF2↑***, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, ERK↓, MARK4↓
- reactivate genes thereby inhibiting cancer cell growth(weak) : HDAC2↓, DNMTs↓weak, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓??, LDHA↓, PFKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells (few references) : CSC↓, Hh↓, GLi1↓,
- Others: PI3K↓, AKT↓, STAT↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


angioG, angiogenesis: Click to Expand ⟱
Source:
Type:
Process through which new blood vessels.
Angiogenesis, the process of new blood vessel formation from pre-existing vessels, plays a crucial role in cancer progression and metastasis. Tumors require a blood supply to grow beyond a certain size and to spread to other parts of the body.
Vascular Endothelial Growth Factor (VEGF): VEGF is one of the most important pro-angiogenic factors. It stimulates endothelial cell proliferation and migration, leading to the formation of new blood vessels. Many tumors overexpress VEGF, which correlates with poor prognosis.
Hypoxia-Inducible Factor (HIF): In response to low oxygen levels (hypoxia), tumors can activate HIF, which in turn promotes the expression of VEGF and other angiogenic factors. This mechanism allows tumors to adapt to their microenvironment and sustain growth.


Scientific Papers found: Click to Expand⟱
3006- RosA,    Rosmarinic acid attenuates glioblastoma cells and spheroids’ growth and EMT/stem-like state by PTEN/PI3K/AKT downregulation and ERK-induced apoptosis
- in-vitro, GBM, U87MG - in-vitro, GBM, LN229
TumCG↓, Rosmarinic acid (RA) reduced the glioma growth and motility in 2D- and 3D-cultures
EMT↓, RA suppressed epithelial-mesenchymal transition and stem-cell property in spheroids.
SIRT1↓, RA downregulated SIRT1/FOXO1/NF-κB axis independently of p53 or PTEN function.
FOXO1↓,
NF-kB↓,
angioG↓, RA dose-dependently reduced angiogenesis and intracellular ROS levels, suppressed glioma growth,
ROS↓,
PTEN↓, RA also inhibited the PTEN/PI3K/AKT pathway in U-87MG cells.
PI3K↓,
Akt↓,
*Inflam↓, anti-inflammatory, antimicrobial, cardioprotective, hepatoprotective, neuroprotective, antidiabetic, and especially anticancer effects (
*cardioP↑,
*hepatoP↑,
*neuroP↑,
Warburg↓, suppresses Warburg effect

3007- RosA,    Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action
- Review, NA, NA
*ROS↓, antioxidant properties as a ROS scavenger and lipid peroxidation inhibitor, anti-inflammatory, neuroprotective and antiangiogenic among others.
*lipid-P↓,
*Inflam↓,
*neuroP↑,
*angioG↓,
*eff↑, The hepatoprotective effects of RA alone and in combination with caffeic acid (CA) was reported in t-BHP-induced oxidative liver damage
*AST↓, significant reduction of indicators of hepatic toxicity, such as AST, ALT, GSSG, lipid peroxidation.
*ALAT↓,
*GSSG↓,
*eNOS↓, It also reduced the liver content of eNOS/iNOS and NO, attenuated NF-κB activation
*iNOS↓,
*NO↓,
*NF-kB↓,
*MMP2↓, It inhibited MMP-2 activity and suppressed ROS generation and lipid peroxidation.
*MDA↓, It also decreased malondialdehyde (MDA) and TNF-α levels while increasing GSH levels as well as SOD and GSH-Px activities in the livers and kidneys.
*TNF-α↓,
*GSH↑,
*SOD↑,
*IL6↓, RA decreased the hepatic level of IL-6, TNF-Alpha, and PGE2, as well as the activity of COX-2 It also decreased hepatic RAGE and sorbitol levels, and GLO-1 activity
*PGE2↓,
*COX2↓,
*mTOR↑, In the study, it was observed that RA stimulated hepatocyte proliferation. Specifically activated the mTOR signaling pathway during liver regeneration and rescued PH-impaired liver functions


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   angioG↓,1,   EMT↓,1,   FOXO1↓,1,   NF-kB↓,1,   PI3K↓,1,   PTEN↓,1,   ROS↓,1,   SIRT1↓,1,   TumCG↓,1,   Warburg↓,1,  
Total Targets: 11

Results for Effect on Normal Cells:
ALAT↓,1,   angioG↓,1,   AST↓,1,   cardioP↑,1,   COX2↓,1,   eff↑,1,   eNOS↓,1,   GSH↑,1,   GSSG↓,1,   hepatoP↑,1,   IL6↓,1,   Inflam↓,2,   iNOS↓,1,   lipid-P↓,1,   MDA↓,1,   MMP2↓,1,   mTOR↑,1,   neuroP↑,2,   NF-kB↓,1,   NO↓,1,   PGE2↓,1,   ROS↓,1,   SOD↑,1,   TNF-α↓,1,  
Total Targets: 24

Scientific Paper Hit Count for: angioG, angiogenesis
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:142  Target#:447  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page