Database Query Results : Magnetic Fields, ,

MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Scientific Papers found: Click to Expand⟱
2612- Ba,  MF,    The effect of a static magnetic field and baicalin or baicalein interactions on amelanotic melanoma cell cultures (C32)
- in-vitro, Melanoma, NA
SOD1↑, SOD2↑, GPx1↑, Dose?, eff↝, SOD1↓, SOD2↓, GPx1↓,
2018- CAP,  MF,    Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma
- Review, HCC, NA
TRPV1↑, eff↑, Akt↓, mTOR↓, p‑STAT3↑, MMP2↑, ER Stress↑, Ca+2↑, ROS↑, selectivity↑, MMP↓, eff↑,
659- EGCG,  MNPs,  MF,    Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction
- in-vivo, Nor, NA
*BioEnh↑,
658- EGCG,  MNPs,  MF,    Laminin Receptor-Mediated Nanoparticle Uptake by Tumor Cells: Interplay of Epigallocatechin Gallate and Magnetic Force at Nano-Bio Interface
- in-vitro, GBM, LN229
*BioEnh↑,
657- EGCG,  MNPs,  MF,    Interaction of poly-l-lysine coating and heparan sulfate proteoglycan on magnetic nanoparticle uptake by tumor cells
- in-vitro, GBM, U87MG
*BioEnh↑,
654- EGCG,  MNPs,  MF,    Characterization of mesenchymal stem cells with augmented internalization of magnetic nanoparticles: The implication of therapeutic potential
- in-vitro, Var, NA
*BioEnh↑,
401- GoldNP,  MF,    In vitro evaluation of electroporated gold nanoparticles and extremely-low frequency electromagnetic field anticancer activity against Hep-2 laryngeal cancer cells
- in-vitro, Laryn, HEp2
Casp3↑, P53↑, BAX↑, Bcl-2↓,
594- MF,  VitC,    Static Magnetic Field Effect on the Fremy's Salt-Ascorbic Acid Chemical Reaction Studied by Continuous-Wave Electron Paramagnetic Resonance
- Analysis, NA, NA
RPM↑,
537- MF,  immuno,    Integrating electromagnetic cancer stress with immunotherapy: a therapeutic paradigm
- Review, Var, NA
Apoptosis↑, ROS↑, TumAuto↑, Ca+2↑, ATP↓, eff↑, eff↑,
538- MF,    The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift
- in-vitro, BC, MDA-MB-231 - in-vitro, Melanoma, MSTO-211H
TumCG↓, Ca+2↑, COX2↓, ATP↑, MMP↑, ROS↑, OXPHOS↑, mitResp↑,
539- MF,    Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers
- in-vitro, NA, NA
eff↑,
582- MF,  immuno,  VitC,    Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy
- in-vitro, Pca, TRAMP-C1 - in-vivo, NA, NA
Fenton↑, Ferroptosis↑, ROS↑, TumCG↓, Iron↑, GPx4↓,
585- MF,  VitC,    Impact of pulsed magnetic field treatment on enzymatic inactivation and quality of cloudy apple juice
other↓,
587- MF,  VitC,    Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean
ROS↑, SOD↓, other↓,
590- MF,  VitC,    Sub-millitesla magnetic field effects on the recombination reaction of flavin and ascorbic acid radicals
- in-vitro, NA, NA
RPM↑,
592- MF,  VitC,    Alternative radical pairs for cryptochrome-based magnetoreception
RPM↑,
535- MF,    Electromagnetic Fields Trigger Cell Death in Glioblastoma Cells through Increasing miR-126-5p and Intracellular Ca2+ Levels
- in-vitro, Pca, PC3 - in-vitro, GBM, A172 - in-vitro, Pca, HeLa
Apoptosis↑, miR-129-5p↑, Ca+2↑, eff↝,
1762- MF,  Fe,    Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane
- in-vitro, RCC, NA
Dose∅, Apoptosis↑, Casp↑, tumCV↓, Casp3↑, Casp7↑, Ca+2↑, Cyt‑c↑,
2235- MF,    Increase of intracellular Ca2+ concentration in Listeria monocytogenes under pulsed magnetic field
- in-vitro, Inf, NA
Ca+2↑, TumCD↑,
2236- MF,    Changes in Ca2+ release in human red blood cells under pulsed magnetic field
- in-vitro, Nor, NA
*Ca+2↓, *eff↓, *ROS↓,
527- MF,    Effects of Fifty-Hertz Electromagnetic Fields on Granulocytic Differentiation of ATRA-Treated Acute Promyelocytic Leukemia NB4 Cells
- in-vitro, AML, APL NB4
ROS↑, other↑, p‑ERK↑, TumCP↓,
517- MF,  Rad,    Therapeutic Electromagnetic Field (TEMF) and gamma irradiation on human breast cancer xenograft growth, angiogenesis and metastasis
- in-vivo, NA, MDA-MB-231
TumMeta↓, TumCG↓,
518- MF,    Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation
- in-vitro, NA, HCT116
EGFR↓, p‑EGFR↓,
519- MF,    Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells
- in-vitro, AML, K562
HSP70/HSPA5↑,
520- MF,    Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3β signaling pathway
- in-vitro, Nor, NA
*MPT↑, *Cyt‑c↑, *ROS↑, *p‑GSK‐3β↑, *eff↓, *MMP∅, *BAX↓, *Bcl-2∅,
521- MF,    Magnetic field effects in biology from the perspective of the radical pair mechanism
- Analysis, NA, NA
RPM↑,
523- MF,  MTX,    Extremely low-frequency magnetic fields significantly enhance the cytotoxicity of methotrexate and can reduce migration of cancer cell lines via transiently induced plasma membrane damage
- in-vitro, AML, THP1 - in-vitro, NA, PC12 - in-vivo, Cerv, HeLa
H2O2↑, TumCD↑, CellMemb↑, eff↑,
524- MF,    Inhibition of Angiogenesis Mediated by Extremely Low-Frequency Magnetic Fields (ELF-MFs)
- vitro+vivo, PC, MS-1 - vitro+vivo, PC, HUVECs
other↓, TumCP↓, TumCMig↓, VEGFR2↓, TumVol↓, HSP70/HSPA5↓, HSP90↓, TumCCA↑, angioG↓,
525- MF,    Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis
- in-vitro, Nor, HUVECs
*angioG↑, *GPx1↑, *GPx4↑, *SOD↑, *PFKM↑, *PFKL↑, *PKM2↑, *PFKP↑, *HK2↑, *GLUT1↑, *GLUT4↑, *ROS↓, *MMP↝, *Glycolysis↑, *OXPHOS↓,
526- MF,    Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Pca, HeLa - vitro+vivo, Melanoma, B16-BL6 - in-vitro, Nor, HEK293
TumCG↓, Ca+2↑, selectivity↑, *Ca+2∅, ROS↑, HSP70/HSPA5↑, AntiCan↑,
536- MF,    Comparison of pulsed and continuous electromagnetic field generated by WPT system on human dermal and neural cells
- in-vitro, Nor, SH-SY5Y - in-vitro, GBM, T98G - in-vitro, Nor, HDFa
other∅,
528- MF,  Caff,    Pulsed electromagnetic fields affect the intracellular calcium concentrations in human astrocytoma cells
- in-vitro, GBM, U373MG
Ca+2↑, TumCP∅, TumCD∅, eff↑,
529- MF,    Low-frequency magnetic field therapy for glioblastoma: Current advances, mechanisms, challenges and future perspectives
- Review, GBM, NA
Ca+2↑, ROS↑, ChemoSen↑, QoL↑, OS↑,
530- MF,    Low frequency sinusoidal electromagnetic fields promote the osteogenic differentiation of rat bone marrow mesenchymal stem cells by modulating miR-34b-5p/STAC2
- in-vivo, Nor, NA
*miR-34b-5p↓, *ALP↑, *RUNX2↑, *BMP2↑, *OCN↑, *OPN↑, *β-catenin/ZEB1↑, *STAC2↑, *Diff↑, *BMD↑,
531- MF,    6-mT 0-120-Hz magnetic fields differentially affect cellular ATP levels
- in-vitro, Cerv, HeLa - in-vitro, CRC, HCT116 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, RPE-1 - in-vitro, Nor, GP-293
ATP⇅,
532- MF,    A 50 Hz magnetic field influences the viability of breast cancer cells 96 h after exposure
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
TumCP↓, MMP↓, ROS↑, eff↝, selectivity↑,
533- MF,    Effects of extremely low-frequency magnetic fields on human MDA-MB-231 breast cancer cells: proteomic characterization
- in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
TumCD↑, necrosis↑, mt-ROS↑, other↑, *STAT3↓, STAT3↑,
534- MF,    Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancer
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, Nor, MCF10
Ca+2↑, Apoptosis↑, eff↝, eff↑, selectivity↑, eff↝, eff↝,
2238- MF,    Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects
- Review, Var, NA
*BMD↑, *VGCC↑, *Ca+2↑, *NO↑, *eff↓,
3465- MF,    Magnetic fields and angiogenesis
- Review, Var, NA
angioG↓, *angioG↑, selectivity↑, Ca+2↝, ROS↝,
2257- MF,  HPT,    HSP70 Inhibition Synergistically Enhances the Effects of Magnetic Fluid Hyperthermia in Ovarian Cancer
- in-vitro, Ovarian, NA
eff↑, eff↑,
2260- MF,    Alternative magnetic field exposure suppresses tumor growth via metabolic reprogramming
- in-vitro, GBM, U87MG - in-vitro, GBM, LN229 - in-vivo, NA, NA
TumCP↓, TumCG↓, OS↑, ROS↑, SOD2↑, eff↓, ECAR↓, OCR↑, selectivity↑, *toxicity∅, TumVol↓, PGC-1α↑, OXPHOS↑, Glycolysis↓, PKM2↓,
2261- MF,    Tumor-specific inhibition with magnetic field
- in-vitro, Nor, GP-293 - in-vitro, Liver, HepG2 - in-vitro, Lung, A549
ROS↑, Ca+2↓, Apoptosis↑, *selectivity↑, TumCG↓, *i-Ca+2↓, i-Ca+2↑,
3457- MF,    Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis
- Review, Var, NA
Apoptosis↑, H2O2↑, ROS↑, eff↑, eff↑, Ca+2↑, MAPK↑, *Catalase↑, *SOD1↑, *GPx1↑, *GPx4↑, *NRF2↑, TumAuto↑, ER Stress↑, HSPs↑, SIRT3↑, ChemoSen↑, UPR↑, other↑, PI3K↓, JNK↑, p38↑, eff↓, *toxicity?,
3458- MF,    Magnetic Control of Protein Expression via Magneto-mechanical Actuation of ND-PEGylated Iron Oxide Nanocubes for Cell Therapy
- in-vitro, GBM, NA
ER Stress↑, UPR↑, Ca+2↑, TRAIL↓, GRP78/BiP↑,
3459- MF,    EFFECT OF PULSED ELECTROMAGNETIC FIELDS ON ENDOPLASMIC RETICULUM STRESS
- in-vitro, Cerv, HeLa
GRP78/BiP↑, GRP94↑, CHOP↑, ER Stress↓,
3462- MF,    The Effect of a Static Magnetic Field on microRNA in Relation to the Regulation of the Nrf2 Signaling Pathway in a Fibroblast Cell Line That Had Been Treated with Fluoride Ions
- in-vitro, Nor, NA
*NRF2↑, *Keap1↓, *SOD↑, *GPx↑, *ROS↓, *MDA↓, *SOD1↑, *SOD2↑, *GSR↑,
3463- MF,    Pulsed Electromagnetic Fields Alleviates Hepatic Oxidative Stress and Lipids Accumulation in db/db mice
- in-vivo, NA, NA
*hepatoP↑, *MDA↓, *GSSG↓, *GSH↑, *GPx↑, *antiOx↑, *SREBP1↓,
3464- MF,    Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology
- Review, Var, NA
AntiTum↑, TumCG↓, TumCCA↑, Apoptosis↑, TumAuto↑, Diff↑, angioG↓, TumMeta↓, EPR↑, ChemoSen↑, ROS↑, DNAdam↑, P53↑, Akt↓, MAPK↑, Casp9↑, VEGFR2↓, P-gp↓,
2256- MF,  HPT,    Effects of exposure to repetitive pulsed magnetic stimulation on cell proliferation and expression of heat shock protein 70 in normal and malignant cells
- in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Nor, HBL-100
HSP70/HSPA5↑, HSP70/HSPA5∅,
3466- MF,    The effect of magnetic fields on tumor occurrence and progression: Recent advances
- Review, Var, NA
angioG↓, ROS↝, EGFR↝, TumCG↓,
3467- MF,    Pulsed Magnetic Field Induces Angiogenesis and Improves Cardiac Function of Surgically Induced Infarcted Myocardium in Sprague-Dawley Rats
- in-vivo, Nor, NA
*angioG↑, *cardioP↑,
3468- MF,    An integrative review of pulsed electromagnetic field therapy (PEMF) and wound healing
- Review, NA, NA
*other↑, *necrosis↓, *IL6↑, *TGF-β↑, *iNOS↑, *MMP2↑, *MCP1↑, *HO-1↑, *Inflam↓, *IL1β↓, *IL6↓, *TNF-α↓, *BioAv↑, eff⇅, DNAdam↑, Apoptosis↑, ROS↑, TumCP↓, *ROS↓, *FGF↑,
3469- MF,    Pulsed Electromagnetic Fields (PEMF)—Physiological Response and Its Potential in Trauma Treatment
- Review, NA, NA
*eff↑, *eff↝, *other↑, Ca+2↑, ROS↑, HSP70/HSPA5↑, *NOTCH↑, *HEY1↑, *p38↑, *MAPK↑,
3470- MF,    Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8+ T cell dysfunction and suppress cervical cancer progression
- in-vitro, Cerv, HeLa
TNF-α↑, IL6↑, ROS↑, Apoptosis↑, TumCP↓, TumCMig↓, TumCI↓,
3471- MF,    The prevention effect of pulsed electromagnetic fields treatment on senile osteoporosis in vivo via improving the inflammatory bone microenvironment
- in-vivo, Nor, NA
*BMD↑, *NLRP3↓, *proCasp1↓, *cl‑Casp1↓, *IL1β↓, *GSDMD↓,
3472- MF,    Pulsed electromagnetic field alleviates synovitis and inhibits the NLRP3/Caspase-1/GSDMD signaling pathway in osteoarthritis rats
- in-vivo, ostP, NA
*Inflam↓, *NLRP3↓, *Casp1↓, *GSDMD?,
3473- MF,    Therapeutic use of pulsed electromagnetic field therapy reduces prostate volume and lower urinary tract symptoms in benign prostatic hyperplasia
- Human, BPH, NA
*Inflam↓, *Dose↝, *other?,
2247- MF,    Effects of Pulsed Electromagnetic Field Treatment on Skeletal Muscle Tissue Recovery in a Rat Model of Collagenase-Induced Tendinopathy: Results from a Proteome Analysis
- in-vivo, Nor, NA
*Glycolysis↓, *LDHB↑, *NAD↑, *ATP↑, *antiOx↑, *ROS↑, *YAP/TEAD↑, *PGC-1α↑, *TCA↑, *FAO↑, *OXPHOS↑,
522- MF,    Low Magnetic Field Exposure Alters Prostate Cancer Cell Properties
- in-vitro, Pca, PC3
MMP2↑, MMP9↑, miR-21↑, miR-155↑, miR-210↑, miR-200c↓, miR-126↓,
2239- MF,    Time-varying magnetic fields increase cytosolic free Ca2+ in HL-60 cells
- in-vitro, AML, HL-60
Ca+2↑, eff↝,
2240- MF,    Pulsed electromagnetic field induces Ca2+-dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca2+/Wnt-β-catenin signaling pathway
- in-vitro, Nor, C3H10T1/2
*Ca+2↑, *Diff↑, *BMD↑, *Wnt↑, *β-catenin/ZEB1↑, *eff↝,
2241- MF,    Pulsed electromagnetic therapy in cancer treatment: Progress and outlook
- Review, Var, NA
other↝, p‑ERK↝, P53↝, Cyt‑c↝, OXPHOS↑, Apoptosis↑, ROS↑,
2242- MF,    Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair
- in-vitro, Nor, NA
*MMP↑, *Diff↑, *OXPHOS↑, *BMD↑, ATP∅,
2243- MF,    Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: an in-vitro study
- in-vitro, Nor, NA
*eff↑, *mTOR↑, *Akt↑, *PKA↑, *MAPK↑, *ERK↑, *BMP2↑, *Diff↑, *PKCδ↓, *VEGF↑, *IL10↑,
2244- MF,    Little strokes fell big oaks: The use of weak magnetic fields and reactive oxygen species to fight cancer
- Review, Var, NA
RPM↑, Glycolysis∅, ROS↑, ChemoSen↑, RadioS↑, selectivity↑,
2245- MF,    Quantum based effects of therapeutic nuclear magnetic resonance persistently reduce glycolysis
- in-vitro, Nor, NIH-3T3
Warburg↓, Hif1a↓, *Hif1a∅, Glycolysis↓, *lactateProd↓, *ADP:ATP↓, Pyruv↓, ADP:ATP↓, *PPP↓, *mt-ROS↑, *ROS↓, RPM↑, *ECAR↓,
2246- MF,    The Use of Pulsed Electromagnetic Field to Modulate Inflammation and Improve Tissue Regeneration: A Review
- in-vitro, Nor, NA
*Inflam↓, *IL1↓, *IL6↓, IL17↓, *TNF-α↓,
2237- MF,    The Effect of Pulsed Electromagnetic Field Stimulation of Live Cells on Intracellular Ca2+ Dynamics Changes Notably Involving Ion Channels
- in-vitro, AML, KG-1 - in-vitro, Nor, HUVECs
Ca+2↑, selectivity↑, *Inflam↓, *TNF-α↓, *NF-kB↓, *Ca+2↓,
2248- MF,    Magnetic fields modulate metabolism and gut microbiome in correlation with Pgc-1α expression: Follow-up to an in vitro magnetic mitohormetic study
- in-vivo, Nor, NA
*PGC-1α↑, *GutMicro↑, *FAO↓, *Insulin↓,
2249- MF,    Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study
- in-vitro, Nor, L929
*TumCMig↑, *tumCV↑, *Glycolysis↑, *ROS↓, *mitResp↓, *other↝, *OXPHOS↓, *pH↑, *antiOx↑, *PFKM↑, *PFKL↑, *PKM2↑, *HK2↑, *GLUT1↑, *GPx1↑, *GPx4↑, *SOD1↑,
2250- MF,  MNPs,    Confronting stem cells with surface-modified magnetic nanoparticles and low-frequency pulsed electromagnetic field
- Review, NA, NA
*Ca+2↑, *Dose↝, *BioAv↓,
2251- MF,  Rad,    BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage
- in-vitro, Lung, A549 - in-vitro, HNSCC, UTSCC15 - in-vitro, CRC, DLD1 - in-vitro, PC, MIA PaCa-2
RadioS↑, DNAdam↑, ROS↑, ChemoSen∅, Pyruv↓, ADP:ATP↓, ROS↑,
2252- MF,  HPT,    Cellular Response to ELF-MF and Heat: Evidence for a Common Involvement of Heat Shock Proteins?
- Review, NA, NA
HSPs∅, *HSPs↑, eff↝, *eff↑, eff↑, eff↓,
2253- MF,    Low-frequency pulsed electromagnetic field promotes functional recovery, reduces inflammation and oxidative stress, and enhances HSP70 expression following spinal cord injury
- in-vivo, Nor, NA
*Inflam↓, *TNF-α↓, *IL1β↓, *NF-kB↓, *iNOS↓, *ROS↓, Catalase↑, *SOD↑, *HSP70/HSPA5↑, *neuroP↑, *motorD↑, *antiOx↑,
2254- MF,    Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vivo study
- in-vivo, Nor, NA
*HSP70/HSPA5↑, HSP70/HSPA5↑,
2255- MF,    Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative Stress
- in-vitro, Nor, SkMC
*HSP70/HSPA5↑, *Apoptosis↓, *Inflam↓, *Trx↓, *PONs↓, *SOD2↓, *TumCG↑, *Diff↑, *HIF2a↑, *Cyt‑c↑, P21↑,
490- MF,    Extremely Low Frequency Magnetic Field (ELF-MF) Exposure Sensitizes SH-SY5Y Cells to the Pro-Parkinson's Disease Toxin MPP(.)
- in-vitro, Park, SH-SY5Y
ROS↑,
498- MF,    Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study
- in-vitro, NA, NA
Calcium↑, MMP1↑, MMP3↑, BMPs↑,
497- MF,    In Vitro and in Vivo Study of the Effect of Osteogenic Pulsed Electromagnetic Fields on Breast and Lung Cancer Cells
- vitro+vivo, NA, MCF-7 - vitro+vivo, NA, A549
TumCG↓, TumVol↓, Casp3↑, Casp7↑, Apoptosis↑, DNAdam↑, TumCCA↑, ChemoSen↑, EPR↑,
496- MF,    Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, ZR-75-1 - in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231
ROS↑, PI3K↓, Akt↓, GSK‐3β↑, Apoptosis↑, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, CycB↓, TumCCA↑, p‑Akt↓, p‑Akt↓,
495- MF,    How a High-Gradient Magnetic Field Could Affect Cell Life
- in-vitro, NA, HeLa
Apoptosis↑, CellMemb↑,
494- MF,    Effects of Various Densities of 50 Hz Electromagnetic Field on Serum IL-9, IL-10, and TNF-α Levels
- in-vivo, NA, NA
IL9↓, TNF-α↓,
493- MF,    Extremely low-frequency electromagnetic field induces acetylation of heat shock proteins and enhances protein folding
- in-vitro, NA, HEK293 - in-vitro, Liver, AML12
ATP↑, HSP70/HSPA5↓, HSP90↓,
492- MF,    Weak electromagnetic fields (50 Hz) elicit a stress response in human cells
- in-vitro, AML, HL-60
HSP70/HSPA5↑,
491- MF,    Pre-exposure of neuroblastoma cell line to pulsed electromagnetic field prevents H2 O2 -induced ROS production by increasing MnSOD activity
- in-vitro, neuroblastoma, SH-SY5Y
*Dose∅, *ROS↓,
515- MF,    Pulsed Low-Frequency Magnetic Fields Induce Tumor Membrane Disruption and Altered Cell Viability
- in-vitro, Lung, A549
CellMemb↑, TumCP↓,
489- MF,    Time-varying magnetic fields of 60 Hz at 7 mT induce DNA double-strand breaks and activate DNA damage checkpoints without apoptosis
- in-vitro, NA, HeLa - in-vitro, NA, IMR90
DNAdam↑,
488- MF,    Repetitive exposure to a 60-Hz time-varying magnetic field induces DNA double-strand breaks and apoptosis in human cells
- in-vitro, NA, HeLa - in-vitro, NA, IMR90
DNAdam↑, p‑γH2AX↑, Chk2↑, p38↑, Apoptosis↑,
487- MF,    Extremely Low-Frequency Electromagnetic Fields Cause G1 Phase Arrest through the Activation of the ATM-Chk2-p21 Pathway
- in-vitro, NMSC, HaCaT
ATM↑, Chk2↑, P21↑, TumCCA↑,
486- MF,    mTOR Activation by PI3K/Akt and ERK Signaling in Short ELF-EMF Exposed Human Keratinocytes
- in-vitro, Nor, HaCaT
*mTOR↑, *PI3K↑, *Akt↑, *p‑ERK↑, *other↑, *p‑JNK↑, *p‑P70S6K↑,
192- MF,    The use of magnetic fields in treatment of patients with rheumatoid arthritis. Review of the literature
- Review, Arthritis, NA
*Dose↝,
194- MF,    Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke
- Review, Stroke, NA
*BAD↓, *BAX↓, *Casp3↓, *Bcl-xL↑, *p‑Akt↑, *MMP9↓, *p‑ERK↑, *HIF-1↓, *ROS↓, *VEGF↑, *Ca+2↓, *SOD↑, *IL2↑, *p38↑, *HSP70/HSPA5↑, *Apoptosis↓, *ROS↓, *NO↓,
196- MF,    Mechanism for action of electromagnetic fields on cells

197- MF,    A mechanism for action of oscillating electric fields on cells

500- MF,    Anti-Oxidative and Immune Regulatory Responses of THP-1 and PBMC to Pulsed EMF Are Field-Strength Dependent
- in-vitro, AML, THP1
ROS↑, Prx6↑, DHCR24↑, IL10↑,
514- MF,    Therapeutic electromagnetic field effects on angiogenesis and tumor growth
- in-vivo, NA, NA
TumVol↓,
513- MF,    Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468 - in-vitro, BC, MCF-7 - in-vivo, Pca, HeLa
TumCG↓, p‑ERK↑, cAMP⇅,
512- MF,    Pulsed Electromagnetic Fields (PEMFs) Trigger Cell Death and Senescence in Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, FF95
TumCP↓, *toxicity↓, ChemoSen↑, RadioS↑, selectivity↑,
511- MF,    Optimization of a therapeutic electromagnetic field (EMF) to retard breast cancer tumor growth and vascularity
- in-vivo, NA, NA
TumVol↓,
510- MF,    Effect of a 9 mT pulsed magnetic field on C3H/Bi female mice with mammary carcinoma. A comparison between the 12 Hz and the 460 Hz frequencies
- in-vivo, NA, NA
OS↑,
509- MF,    Is extremely low frequency pulsed electromagnetic fields applicable to gliomas? A literature review of the underlying mechanisms and application of extremely low frequency pulsed electromagnetic fields
- Review, NA, NA
Ca+2↑, TumAuto↑, Apoptosis↑, angioG↓, ROS↑,
508- MF,  doxoR,    Synergistic cytotoxic effects of an extremely low-frequency electromagnetic field with doxorubicin on MCF-7 cell line
- in-vitro, BC, MCF-7
ROS↑, Apoptosis↑, TumCCA↑,
507- MF,    Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanism
- in-vitro, Liver, HepG2 - in-vitro, Lung, A549 - in-vitro, Nor, GP-293
MMP↓, TumCG↓, ROS↑, *Ca+2↓, Ca+2↑, selectivity↑, i-pH↑,
505- MF,    Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach
- Case Report, NA, NA
Pain↓, OS↑,
504- MF,    Effect of Magnetic Fields on Tumor Growth and Viability
- in-vivo, NA, NA
TumCG↓,
506- MF,  doxoR,    Pulsed Electromagnetic Field Stimulation Promotes Anti-cell Proliferative Activity in Doxorubicin-treated Mouse Osteosarcoma Cells
- in-vitro, OS, LM8
TumCP↓, p‑CHK1↓, Ca+2↑, Casp3↓, Casp7↓, p‑BAD↓, ChemoSen↑,
499- MF,    The Effect of Pulsed Electromagnetic Fields on Angiogenesis
- Review, NA, NA
angioG↑, VEGF↑, VGCC↑,
503- MF,    Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation
- in-vitro, NA, PC12
ROS↑, Ca+2↑,
501- MF,    Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell Viability
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
Apoptosis↑, *toxicity↓, ChemoSen↑, chemoP↑, selectivity↑, DNAdam↑,
502- MF,    Electromagnetic field investigation on different cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, Colon, SW480 - in-vitro, CRC, HCT116
TumCG↓, Apoptosis↑,
4092- MF,    Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology
- Review, Var, NA
Apoptosis↑, selectivity↑, ROS↑, Catalase↓, TumVol↓, angioG↓,
4101- MF,    Benign Effect of Extremely Low-Frequency Electromagnetic Field on Brain Plasticity Assessed by Nitric Oxide Metabolism during Poststroke Rehabilitation
- Human, Stroke, NA
*motorD↑, *cognitive↑, *eff↑, *NO↑, *other↝, *neuroP↑,
4100- MF,    Neurobiological effects and mechanisms of magnetic fields: a review from 2000 to 2023
- Review, Var, NA
*memory↑, *Mood⇅,
4099- MF,    Extremely low frequency electromagnetic field reduces oxidative stress during the rehabilitation of post-acute stroke patients
- Trial, Stroke, NA
*ROS↓,
4098- MF,    Extremely low frequency electromagnetic field (ELF-EMF) reduces oxidative stress and improves functional and psychological status in ischemic stroke patients
- Trial, Stroke, NA
*antiOx↑, *cognitive↑, *Dose↝,
4097- MF,    Theta Frequency Electromagnetic Stimulation Enhances Functional Recovery After Stroke
- Trial, Stroke, NA
*motorD↑, *eff↑, *Dose↝,
4096- MF,    Extremely Low‐Frequency and Low‐Intensity Electromagnetic Field Technology (ELF‐EMF) Sculpts Microtubules
- in-vitro, AD, NA
*p‑tau↓, *neuroP↑, *Dose↝,
4095- MF,    Frequency-tuned electromagnetic field therapy improves post-stroke motor function: A pilot randomized controlled trial
- Trial, Stroke, NA
*Dose↝, *motorD↑,
4094- MF,    EMAGINE-Study protocol of a randomized controlled trial for determining the efficacy of a frequency tuned electromagnetic field treatment in facilitating recovery within the subacute phase following ischemic stroke
- Study, Stroke, NA
*neuroP↑, *Dose↝,
4093- MF,    Low-intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen species
- in-vivo, NA, NA
*ROS↑, *eff↑,
4102- MF,    Modulation of antioxidant enzyme gene expression by extremely low frequency electromagnetic field in post-stroke patients
- Human, Stroke, NA
*Catalase↑, *SOD1↑, *SOD2↑, *GPx1↑, *GPx4↑, *Dose↝,
4015- MF,    Evaluation of the PTEN and circRNA-CDR1as Gene Expression Changes in Gastric Cancer and Normal Cell Lines Following the Exposure to Weak and Moderate 50 Hz Electromagnetic Fields
- in-vitro, GC, AGS - in-vitro, Nor, HU02
*PTEN↑, PTEN↓, Dose↝,
3942- MF,    Chronic-Exposure Low-Frequency Magnetic Fields (Magnetotherapy and Magnetic Stimulation) Influence Serum Serotonin Concentrations in Patients with Low Back Pain-Clinical Observation Study
- Human, AD, NA
*5HT↑,
3746- MF,    Low-Frequency Pulsed Electromagnetic Field Is Able to Modulate miRNAs in an Experimental Cell Model of Alzheimer's Disease
- in-vitro, AD, NA
*cognitive↑, *memory↑, *BACE↓,
3744- MF,    Cognitive improvement via a modulated rhythmic pulsed magnetic field in D-galactose-induced accelerated aging mice
- in-vivo, AD, NA
*cognitive↑, *memory↑,
3742- MF,    The role of magnetic fields in neurodegenerative diseases
- Review, AD, NA - Review, Park, NA
cognitive↑,
3741- MF,    Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders
- Review, NA, NA
*eff↑, *BMD↑, *Inflam↓, *PGE2↓, *IL6↓, *IL8↓, *NF-kB↓, *mTOR↝,
3740- MF,    Gamma rhythm low field magnetic stimulation alleviates neuropathologic changes and rescues memory and cognitive impairments in a mouse model of Alzheimer's disease
- in-vivo, AD, NA
*cognitive↑, *Dose↝, *Aβ↓, *PSD95↑,
3739- MF,    Early intervention using long-term rhythmic pulsed magnetic stimulation alleviates cognitive decline in a 5xFAD mouse model of Alzheimer's disease
- in-vivo, AD, NA
*memory↑, *cognitive↑, *Aβ↓, *FGF↑,
3737- MF,    The Effect of Time-Dependence of 10 Hz Electromagnetic Field on Spatial Learning and Memory in Rats
- in-vivo, AD, NA
*memory↑, *BDNF↑, *BBB↑,
4116- MF,    Low‑frequency pulsed electromagnetic field promotes functional recovery, reduces inflammation and oxidative stress, and enhances HSP70 expression following spinal cord injury
- in-vivo, NA, NA
*Inflam↓, *TNF-α↓, *IL1β↓, *iNOS↓, *ROS↓, *Catalase↑, *SOD↑, HSP70/HSPA5↑,
4150- MF,    Enhanced effect of combining bone marrow mesenchymal stem cells (BMMSCs) and pulsed electromagnetic fields (PEMF) to promote recovery after spinal cord injury in mice
- in-vitro, NA, NA
*BDNF↑, *VEGF↑,
4149- MF,    Pulsed Electro-Magnetic Field (PEMF) Effect on Bone Healing in Animal Models: A Review of Its Efficacy Related to Different Type of Damage
- Review, NA, NA
*other↑, *BDNF↑, *BMPs↑, *BMD↑,
4148- MF,    Increase in Blood Levels of Growth Factors Involved in the Neuroplasticity Process by Using an Extremely Low Frequency Electromagnetic Field in Post-stroke Patients
- Human, Stroke, NA
*neuroP↑, *BDNF↑, *Dose↝,
4147- MF,    PEMFs Restore Mitochondrial and CREB/BDNF Signaling in Oxidatively Stressed PC12 Cells Targeting Neurodegeneration
- in-vitro, AD, PC12
*ROS↓, *Catalase↑, *MMP↑, *Casp3↓, *p‑ERK↓, *cAMP↑, *p‑CREB↑, *BDNF↑, *neuroP↑,
4146- MF,    Pulsed electromagnetic field enhances brain-derived neurotrophic factor expression through L-type voltage-gated calcium channel- and Erk-dependent signaling pathways in neonatal rat dorsal root ganglion neurons
- in-vivo, AD, NA
*BDNF↑, *ERK↑,
4120- MF,    Low-Frequency Repetitive Transcranial Magnetic Stimulation of the Right Dorsolateral Prefrontal Cortex Enhances Recognition Memory in Alzheimer's Disease
- Human, AD, NA
*memory↑,
4119- MF,    Therapeutic potential and mechanisms of repetitive transcranial magnetic stimulation in Alzheimer’s disease: a literature review
- Review, AD, NA
*cognitive↑, *memory↑, *motorD↑, *eff↑, *eff↑, *Dose↝, *Dose↝, *Dose↝, *BDNF↑, *Aβ↓, *eff↑,
4118- MF,    Effects of transcranial magnetic stimulation on neurobiological changes in Alzheimer's disease
- Review, AD, NA
*cognitive↑, *BDNF↑, *neuroP↑, *memory↑, *ROS↓, *antiOx↑, *Aβ↓, *eff↑,
4117- MF,    Pulsed electromagnetic fields improve the healing process of Achilles tendinopathy: a pilot study in a rat model
- in-vivo, NA, NA
*other↑,
3735- MF,    Examining the effects of extremely low-frequency magnetic fields on cognitive functions and functional brain markers in aged mice
- in-vivo, AD, NA
*APP∅, *Aβ∅, *Inflam∅, *memory∅,
4112- MF,    Novel protective effects of pulsed electromagnetic field ischemia/reperfusion injury rats
- in-vivo, Stroke, NA
*cardioP↑, *Bcl-2↑, *BAX↓, *ROS↓,
4111- MF,    Coupling of pulsed electromagnetic fields (PEMF) therapy to molecular grounds of the cell
- Review, Arthritis, NA
*Inflam↓, *Cartilage↑, *Pain↓, *QoL↑, *Dose↝, *VEGF↑, *NO↑, *TGF-β↑, *MMP9↓, *PGE2↑, *GPx3↑, *SOD2↑, *Catalase↑, *GSR↑, *Ca+2↑,
4110- MF,    Pulsed Electromagnetic Fields: A Novel Attractive Therapeutic Opportunity for Neuroprotection After Acute Cerebral Ischemia
- Review, Stroke, NA
*ROS↓, *Inflam↓, *other↝, *neuroP↑, *Apoptosis↓, *Hif1a↝,
4109- MF,    Overexpression of miR-26b-5p regulates the cell cycle by targeting CCND2 in GC-2 cells under exposure to extremely low frequency electromagnetic fields
- in-vitro, NA, NA
*other↝,
4106- MF,    Cognitive Decline: Current Intervention Strategies and Integrative Therapeutic Approaches for Alzheimer's Disease
- Review, AD, NA
*cognitive↑, *memory↑, *Aβ↓, *neuroP↑,
4105- MF,    Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: a possible immuno-modulatory therapeutic effect in neurodegenerative diseases
- Review, AD, NA
*Inflam↓, *neuroP↑, *NO↑, *ROS↓, *NO↓, *MCP1↑, *HSP70/HSPA5↑, *antiOx↑, *NRF2↑, *NF-kB↓,
4104- MF,    Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats
- in-vivo, NA, NA
*memory↑, *ROS↑,
4103- MF,    Comparing the Effects of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields With Different Values on Learning, Memory, Anxiety, and β-amyloid Deposition in Adult Rats
- in-vivo, NA, NA
*Dose↝, *memory↑, *ROS↑, *MDA↑,
3734- MF,    Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia
- in-vivo, AD, NA
*cognitive↑, *NOTCH1↑,
3475- MF,    A Pulsed Electromagnetic Field Protects against Glutamate-Induced Excitotoxicity by Modulating the Endocannabinoid System in HT22 Cells
- in-vitro, Nor, HT22 - Review, AD, NA
*Apoptosis↓, *LDH↓, *neuroP↑, *toxicity∅, *IL1β↓, *Inflam↓, *IL10↑, *TNF-α↓,
3476- MF,    Pulsed Electromagnetic Fields Stimulate HIF-1α-Independent VEGF Release in 1321N1 Human Astrocytes Protecting Neuron-like SH-SY5Y Cells from Oxygen-Glucose Deprivation
- in-vitro, Stroke, 1321N1 - in-vitro, Park, NA
*VEGF↑, *eff↑, *neuroP↑, *other↑, *eff↑, *Inflam↓, *Hif1a∅,
3477- MF,    Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis
- Review, NA, NA
*Ca+2↑, *VEGF↑, *angioG↑, Ca+2↑, ROS↑, Necroptosis↑, TumCCA↑, Apoptosis↑, *ATP↑, *FAK↑, *Wnt↑, *β-catenin/ZEB1↑, *ROS↑, p38↑, MAPK↑, β-catenin/ZEB1↓, CSCs↓, TumCP↓, ROS↑, RadioS↑, Ca+2↑, eff↓, NO↑,
3478- MF,    One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study
- Trial, BC, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, C2C12
TumCP↓, TumCMig↓, TumCI↓, *toxicity∅, TGF-β↓, Twist↓, Slug↓, β-catenin/ZEB1↓, Vim↓, p‑SMAD2↓, p‑SMAD3↓, angioG↓, VEGF↓, selectivity↑, LIF↑,
3479- MF,    Evaluation of Pulsed Electromagnetic Field Effects: A Systematic Review and Meta-Analysis on Highlights of Two Decades of Research In Vitro Studies
- Review, NA, NA
*eff↓, eff↝, *Hif1a↑, *VEGF↑, *TIMP1↑, *E2Fs↑, *MMP2↑, *MMP9↑, Apoptosis↑,
3480- MF,    Cellular and Molecular Effects of Magnetic Fields
- Review, NA, NA
ROS↑, *Ca+2↑, *Inflam↓, *Akt↓, *mTOR↓, selectivity↑, *memory↑, *MMPs↑, *VEGF↑, *FGF↑, *PDGF↑, *TNF-α↑, *HGF/c-Met↑, *IL1↑,
3481- MF,    No effects of pulsed electromagnetic fields on expression of cell adhesion molecules (integrin, CD44) and matrix metalloproteinase-2/9 in osteosarcoma cell lines
- in-vitro, OS, MG63 - in-vitro, OS, SaOS2
ITGA1∅, ITGB1∅, ITGA5∅, ITGB3∅, ITGB4∅, MMP2∅, MMP9∅, eff↑,
3482- MF,    Pulsed Electromagnetic Fields Increase Angiogenesis and Improve Cardiac Function After Myocardial Ischemia in Mice
- in-vitro, NA, NA
*cardioP↑, *VEGF↑, *VEGFR2↑, *Hif1a↑, *FGF↑, *ITGB1↑, *angioG↑,
3483- MF,    Pulsed Electromagnetic Fields Protect Against Brain Ischemia by Modulating the Astrocytic Cholinergic Anti-inflammatory Pathway
- NA, Stroke, NA
*Inflam↓, *STAT3↓, *p‑STAT3↓,
3484- MF,    Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2 − and H2O2
- in-vitro, Nor, NA
*GPx↑, *SOD2↑, *Catalase↑, *GSR↑, *ROS↓,
3485- MF,    Cytoprotective effects of low-frequency pulsed electromagnetic field against oxidative stress in glioblastoma cells
- in-vitro, GBM, U87MG
*antiOx↑, *ROS↓, *cytoP↑,
3486- MF,    Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death
- in-vitro, NA, NA
ChemoSen↑, tumCV↓, cl‑PARP↑, Casp7↑, Casp9↑, survivin↓, BAX↑, DNAdam↑, ROS↑, eff↓,
3487- MF,  Rad,    High-specificity protection against radiation-induced bone loss by a pulsed electromagnetic field
- Review, Var, NA
radioP↑, *Ca+2↑, RAS↑, MAPK↓,
3498- MF,    Effect of Static Magnetic Field on Oxidant/Antioxidant Parameters in Cancerous and Noncancerous Human Gastric Tissues
- in-vitro, GC, NA
*SOD↑, *MDA↓, SOD↓, GPx↓, MDA↑, Catalase↑,
3474- MF,    Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regeneration
- in-vitro, Nor, NA
*Inflam↓, *Apoptosis↓, *other↑, *PGE2↓, *COX2↓, *IL6↓, *IL8↓, *cAMP↑, *IL10↑,
3501- MF,    Unveiling the Power of Magnetic-Driven Regenerative Medicine: Bone Regeneration and Functional Reconstruction
- Review, NA, NA
*VEGF↑, *BMPs↓, *SMAD4↑, *SMAD5↑, *Ca+2↑,
3728- MF,    Long-term exposure to ELF-MF ameliorates cognitive deficits and attenuates tau hyperphosphorylation in 3xTg AD mice
- in-vivo, AD, NA
*cognitive↑, *neuroP↑, *Apoptosis↓, *ROS↓, *p‑tau↓, *GSK‐3β↓, *CDK5↓,
3727- MF,    RKIP-Mediated NF-κB Signaling is involved in ELF-MF-mediated improvement in AD rat
- in-vivo, AD, NA
*cognitive↑, *RKIP↑, *p‑IKKα↓,
3726- MF,    Spatial memory recovery in Alzheimer's rat model by electromagnetic field exposure
- in-vivo, AD, NA
*memory↑, *cognitive↑,
3725- MF,    Short-term effects of extremely low frequency electromagnetic fields exposure on Alzheimer's disease in rats
- in-vivo, AD, NA
*Weight∅, *memory∅, *cognitive∅, *Aβ∅,
3724- MF,  RF,    Electromagnetic Field in Alzheimer's Disease: A Literature Review of Recent Preclinical and Clinical Studies
- Review, AD, NA
*memory↑, *neuroP↑,
3569- MF,    Current Evidence Using Pulsed Electromagnetic Fields in Osteoarthritis: A Systematic Review
- Review, Arthritis, NA
*Pain↓, *QoL↑, *motorD↑,
3568- MF,    The Efficacy of Pulsed Electromagnetic Fields on Pain, Stiffness, and Physical Function in Osteoarthritis: A Systematic Review and Meta-Analysis
- Review, Arthritis, NA
*eff↑, *Pain↓, *motorD↑,
3500- MF,    Moderate Static Magnet Fields Suppress Ovarian Cancer Metastasis via ROS-Mediated Oxidative Stress
- in-vitro, Ovarian, SKOV3
ROS↑, CSCs↓, CD44↓, SOX2↓, cMyc↓, TumMeta↓, TumCI↓, TumCMig↓, CD133↓, Nanog↓,
3536- MF,    Targeting Mesenchymal Stromal Cells/Pericytes (MSCs) With Pulsed Electromagnetic Field (PEMF) Has the Potential to Treat Rheumatoid Arthritis
- Review, Arthritis, NA - Review, Stroke, NA
*Inflam↓, *Diff↑, *toxicity∅, *other↑, *SOX9↑, *COL2A1↑, *NO↓, *PGE2↓, *NF-kB↓, *TNF-α↓, *IL1β↓, *IL6↓, *IL10↑, *angioG↑, *MSCs↑, *VEGF↑, *TGF-β↑, *angioG↝, *VEGF↓, Ca+2↝,
3566- MF,    Positive and Negative Effects of Administering a Magnetic Field to Patients with Rheumatoid Arthritis (RA)
- Study, Arthritis, NA
*Inflam↓, *QoL↑, *Pain↓, *motorD↑, *toxicity↓, *Cartilage↑, *Inflam↓,
3535- MFrot,  MF,    Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications
- Review, Nor, NA
*eff↑, *COL2A1↑, *SOX9↑, *Ca+2↑, *FAK↑, *F-actin↑, *Inflam↓, *other↑, *Diff↑, *BMD↑,
3745- MFrot,  MF,    The neurobiological foundation of effective repetitive transcranial magnetic brain stimulation in Alzheimer's disease
- Review, AD, NA
*neuroP↑, *ROS↓, *Inflam↓, *5HT↑, *cFos↑, *Aβ↓, *memory↑, *BDNF↑, *Ach↑, *AChE↓, *cognitive↑, *BDNF↑, *NGF↑, *β-catenin/ZEB1↑, *p‑Akt↓, *mTOR↓, *MMP1↓, *MMP9↓, *MMP-10↓, *TIMP1↑, *TIMP2↑,
3567- MFrot,  MF,    The Effect of Extremely Low-Frequency Magnetic Field on Stroke Patients: A Systematic Review
- Review, Stroke, NA
*eff↑, *ROS↓, *Inflam↓, *cognitive↑, *Catalase↑, *SOD↑, *SOD1↑, *SOD2↑, *GPx1↑, *GPx4↑, *IL1β↑, *neuroP↑, *toxicity∅,
3488- MFrot,  MF,    Rotating magnetic field improves cognitive and memory impairments in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathway
- in-vivo, AD, NA
*cognitive↑, *memory↑, *neuroP↑, *Aβ↓, *PI3K↓, *Akt↓, *mTOR↓,
3489- MFrot,  MF,    Rotating magnetic field inhibits Aβ protein aggregation and alleviates cognitive impairment in Alzheimer's disease mice.
- in-vivo, AD, NA
*Aβ↓, *motorD↑, *cognitive↑, *memory↑, *ROS↓,
3491- MFrot,  MF,    Magnetically controlled cyclic microscale deformation of in vitro cancer invasion models
- in-vitro, BC, MDA-MB-231
Ca+2↑, ATF3↑, FOSB↑,
3492- MFrot,  Chemo,  MF,    Synergistic Effect of Chemotherapy and Magnetomechanical Actuation of Fe-Cr-Nb-B Magnetic Particles on Cancer Cells
eff↑, TumCD↑,
3493- MFrot,  MF,    Mechanical nanosurgery of chemoresistant glioblastoma using magnetically controlled carbon nanotubes
- in-vivo, GBM, NA
TumCD↑, MMP↓, Cyt‑c↑, Apoptosis↑, OS↑, DNAdam↑,
3494- MFrot,  MF,    Magnetically switchable mechano-chemotherapy for enhancing the death of tumour cells by overcoming drug-resistance
- in-vitro, Var, NA
eff↑, TumCD↑,
3495- MFrot,  MF,    Synthesis of urchin-like nickel nanoparticles with enhanced rotating magnetic field-induced cell necrosis and tumor inhibition
- in-vivo, BC, NA
TumCG↓,
3496- MFrot,  GoldNP,  MF,    Enhancement of chemotherapy effects by non-lethal magneto-mechanical actuation of gold-coated magnetic nanoparticles
- in-vitro, Cerv, HeLa
eff↑, tumCV↓,
3497- MFrot,  MF,    The Effect of a Rotating Magnetic Field on the Regenerative Potential of Platelets
- Human, Nor, NA
*PDGFR-BB↑, *TGF-β↑, *IGF-1↑, *FGF↑, *angioG↑, *Inflam↓, *ROS↓,
3499- MFrot,  MF,    Rotating magnetic field delays human umbilical vein endothelial cell aging and prolongs the lifespan of Caenorhabditis elegans
- in-vitro, Nor, HUVECs
*AntiAge↑, *AMPK↑, *mPGES-1↓, *Ca+2↑, *ER Stress↑, *OS↑, *ROS↓,
2258- MFrot,  MF,    EXTH-68. ONCOMAGNETIC TREATMENT SELECTIVELY KILLS GLIOMA CANCER CELLS BY INDUCING OXIDATIVE STRESS AND DNA DAMAGE
- in-vitro, GBM, GBM - in-vitro, Nor, SVGp12
TumVol↓, OS↑, γH2AX↑, DNAdam↑, selectivity↑, ROS↑, TumCD↑, eff↑, eff↓,
2311- MFrot,  MF,    Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials
- in-vivo, Nor, HaCaT
*COX2↓, *Inflam↓, *MMP9↑, *GPx↑, *Diff↑,
2262- MFrot,  MF,    Effects of 0.4 T Rotating Magnetic Field Exposure on Density, Strength, Calcium and Metabolism of Rat Thigh Bones
- in-vivo, ostP, NA
*BMD↑, *eff↓, *ALP↑, *other↑,
201- MFrot,  MF,    Gradient Rotating Magnetic Fields Impairing F-Actin-Related Gene CCDC150 to Inhibit Triple-Negative Breast Cancer Metastasis by Inactivating TGF-β1/SMAD3 Signaling Pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vitro, BC, MDA-MB-468
CCDC150↓, TGF-β↓, SMAD3↓,
202- MFrot,  MF,    Systematic simulation of tumor cell invasion and migration in response to time-varying rotating magnetic field
- Analysis, Var, MDA-MB-231
TumCG↓, MMPs↓, ECM/TCF↓,
2259- MFrot,  MF,    Method and apparatus for oncomagnetic treatment
- in-vitro, GBM, NA
MMP↓, Bcl-2↓, BAX↑, Bak↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, ROS↑, lactateProd↑, Apoptosis↑, MPT↑, *selectivity↑, eff↑, MMP↓, selectivity↑, TCA?, H2O2↑, eff↑, *antiOx↑, H2O2↑, eff↓, GSH/GSSG↓, *toxicity∅, OS↑,
185- MFrot,  MF,    Case Report: End-Stage Recurrent Glioblastoma Treated With a New Noninvasive Non-Contact Oncomagnetic Device
- Human, GBM, NA
TumVol↓, Dose↝, cognitive↑,
203- MFrot,  MF,    Rotating Magnetic Field Induced Oscillation of Magnetic Particles for in vivo Mechanical Destruction of Malignant Glioma
- vitro+vivo, GBM, U87MG
lysoMP↓, TumVol↓, eff↑, Apoptosis↑, Ca+2↑,
204- MFrot,  MF,    Rotating magnetic field improved cognitive and memory impairments in a sporadic ad model of mice by regulating microglial polarization
- in-vivo, AD, NA
*NF-kB↓, *MAPK↓, *TLR4↓, *memory↑, *cognitive↑, *TGF-β1↑, *ARG↑, *IL4↑, *IL10↑, *IL6↓, *IL1↓, *TNF-α↓, *iNOS↓, *ROS↓, *NO↓, *MyD88↓, *p‑IKKα↓, *p‑IκB↓, *p‑p65↓, *p‑JNK↓, *p‑p38↓, *ERK↓, *neuroP↑, *Aβ↓,
205- MFrot,  MF,    Intermittent F-actin Perturbations by Magnetic Fields Inhibit Breast Cancer Metastasis
- vitro+vivo, BC, MDA-MB-231
OS↑, F-actin↓, TumCI↓, TumCMig↓, Rho↓, selectivity↑,
209- MFrot,  MF,    The effect of a rotating magnetic field on the antioxidant system in healthy volunteers - preliminary study
- Human, NA, NA
*SOD↑, *Catalase↑, *ROMO1↑, *MDA↓, *TAC↑, *ROS↓,
212- MFrot,  MF,    Rotating magnetic field inhibits Aβ protein aggregation and alleviates cognitive impairment in Alzheimer’s disease mice
- in-vivo, AD, SH-SY5Y
*β-Amyloid↓, *cognitive↑, *motorD↑, *ROS↓, *memory↑, *Aβ?,
213- MFrot,  MF,    Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell Surface
- in-vitro, NA, NA
CellMemb↑,
200- MFrot,  MF,    Moderate intensity low frequency rotating magnetic field inhibits breast cancer growth in mice
- in-vivo, BC, MDA-MB-231 - in-vivo, BC, MCF-7
ALAT↓, TumVol↓,
199- MFrot,  MF,    Modulation of Cellular Response to Different Parameters of the Rotating Magnetic Field (RMF)—An In Vitro Wound Healing Study
- in-vivo, Wounds, L929 - NA, NA, HaCaT
*ROS↑, *Ca+2↓, *other↝, *other↝, *other↝, *other↝, *other↝, *other?,
198- MFrot,  MF,    Biological effects of rotating magnetic field: A review from 1969 to 2021
- Review, Var, NA
AntiCan↑, breath↑, Pain↓, Appetite↑, Strength↑, BowelM↑, TumMeta↓, TumCCA↑,
195- MFrot,  MF,    Application of Rotating Magnetic Fields Increase the Activity of Antimicrobials Against Wound Biofilm Pathogens
- Human, Wounds, NA

193- MFrot,  MF,    Rotating Magnetic Field Mitigates Ankylosing Spondylitis Targeting Osteocytes and Chondrocytes via Ameliorating Immune Dysfunctions
- in-vivo, Arthritis, NA
BMD↑, Cartilage↑, IL17↓, IL22↓, IL23↓, IL28↓, CD4+↓, CD8+↓, LAMB3↑, COL4↓, THBS2↓, ITGA11↓, PPARγ↑, ACAA1↓, PLIN1↓, FABP4↓, PCK1↓, UCP1↓, TNF-α↓,
516- MFrot,  immuno,  MF,    Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growth
- vitro+vivo, GBM, U87MG
TumCP↓, Apoptosis↑, TumCMig↓, ROS↑, PD-L1↑, TumVol↓, eff↑, *toxicity∅, eff↑, *toxicity∅, Dose↝, tumCV↓, TumCI↓,
191- MFrot,  MF,    Early exposure of rotating magnetic fields promotes central nervous regeneration in planarian Girardia sinensis
- in-vivo, Nor, NA
*EGR4↑, *Netrins↑, *NSE↑, *NPY↑,
186- MFrot,  MF,    Selective induction of rapid cytotoxic effect in glioblastoma cells by oscillating magnetic fields
- in-vitro, GBM, GBM - in-vitro, Lung, NA
mt-ROS↑, Casp3↑, selectivity↑, TumCD↑,
190- MFrot,  MF,    The efficacy and safety of low-frequency rotating static magnetic field therapy combined with chemotherapy on advanced lung cancer patients: a randomized, double-blinded, controlled clinical trial
- Human, Lung, NA
*IP-10/CXCL-10↑, *GM-CSF↑, *TREM-1↓,
187- MFrot,  MF,    Method for noninvasive whole-body stimulation with spinning oscillating magnetic fields and its safety in mice
- in-vivo, GBM, NA
selectivity↑, ROS↑, *ROS∅, *toxicity∅,
189- MFrot,  MF,    Cancer treatment by magneto-mechanical effect of particles, a review
- vitro+vivo, Var, NA
CellMemb↑, lysoMP↑, ERK↑, Apoptosis↑,
188- MFrot,  MF,    Spinning magnetic field patterns that cause oncolysis by oxidative stress in glioma cells
- in-vitro, GBM, GBM115 - in-vitro, GBM, DIPG
ROS↑, SDH↓, eff↓, RPM↑, eff↓, eff↑, eff↝, eff↝, Casp3↑, eff↝, SOD↓,
228- MFrot,  MF,    Rotating magnetic field ameliorates experimental autoimmune encephalomyelitis by promoting T cell peripheral accumulation and regulating the balance of Treg and Th1/Th17
- NA, MS, NA
*CD4+↑, *MCP1↓, RANTES↓, *MIP‑1α↓, *Treg lymp↓, *IFN-γ↓, *IL17↓, *CXCc↓,
184- MFrot,  MF,    Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer Cells
- in-vitro, GBM, GBM
ROS↑, mitResp↓, mtDam↑, Dose↝, MMP?, OCR↓, mt-H2O2↑, eff↓, SDH↓, Thiols↓, GSH↓, TumCD↑, Casp3↑, Casp7↑, MPT↑, Cyt‑c↑, selectivity↑, GSH/GSSG↓,
595- MFrot,  VitC,  MF,    The Effect of Alternating Magnetic Field Exposure and Vitamin C on Cancer Cells
- in-vitro, PC, MIA PaCa-2 - in-vitro, CRC, SW-620 - in-vitro, NA, HT1080 - in-vitro, Pca, PC3 - in-vitro, OS, U2OS - in-vitro, BC, MCF-7 - in-vitro, Nor, CCD-18Co
TumCD↑, eff↑, *TumCG∅,
1737- MFrot,  Fe,  MF,    Feature Matching of Microsecond-Pulsed Magnetic Fields Combined with Fe3O4 Particles for Killing A375 Melanoma Cells
- in-vitro, MB, A375
Dose∅, tumCV↓,
230- MFrot,  MF,    Study on the Effect of Rotating Magnetic Field on Cellular Response of Mammalian Cells
- in-vitro, Nor, L929
*ALDH↑,
229- MFrot,  MF,    Molecular mechanism of effect of rotating constant magnetic field on organisms
- in-vivo, Nor, NA
*NO↑, *5HT↓, *eff↝, *eff↝, *β-Endo↑, *other↓,
214- MFrot,  MF,    Modification of bacterial cellulose through exposure to the rotating magnetic field
- in-vitro, Nor, NA
CellMemb↑, GlucoseCon↓,
227- MFrot,  MF,    Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway
- in-vivo, Lung, A549 - in-vitro, Lung, A549
TumCG↓, miR-486↑, BCAP↓, Apoptosis↑, ROS↑, TumAuto↑, LC3II↑, ATG5↑, Beclin-1↑, p62↑, TumCP↓,
226- MFrot,  MF,    Involvement of midkine expression in the inhibitory effects of low-frequency magnetic fields on cancer cells
- in-vitro, NA, A549 - in-vitro, NA, LoVo
TumCP↓, eff↝,
225- MFrot,  MF,    Extremely low frequency magnetic fields regulate differentiation of regulatory T cells: Potential role for ROS-mediated inhibition on AKT
- vitro+vivo, Lung, NA
MMP2↓, MMP9↓, FOXP3↓, ROS↑, p‑Akt↓,
217- MFrot,  MF,    Effect of low-frequency rotary magnetic fields on advanced gastric cancer
- in-vivo, GC, HL-60 - in-vivo, GC, SK-HEP-1
OS↑, Pain↓, ChemoSideEff↓, Weight↑, Strength↑, Sleep↑,
215- MFrot,  MF,    Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields
- in-vitro, PC, CAF
TumVol↓, lysoMP↑, CAFs/TAFs↓, eff↑,
216- MFrot,  MF,    Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field
- in-vitro, GBM, U87MG
lysoMP↓, CellMemb↑,
224- MFrot,  MF,    A pilot study of extremely low-frequency magnetic fields in advanced non-small cell lung cancer: Effects on survival and palliation of general symptoms
- Human, NSCLC, NA
PleEff↓, breath↑, Pain↓, Appetite↑, Strength↑, BowelM↑, OS↑,
218- MFrot,  MF,    Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cells
- in-vitro, Nor, NA
*PPARγ↓, *p‑JNK↑, *Wnt↑, *ALP∅, *COL1∅, *RUNX2∅, *OCN∅, *FABP4↓, *p‑JNK↑, *Diff↓,
219- MFrot,  MF,    The expression and intranuclear distribution of nucleolin in HL-60 and K-562 cells after repeated, short-term exposition to rotating magnetic fields
- in-vitro, AML, HL-60 - in-vitro, AML, K562
nucleolin↑,
220- MFrot,  MF,    Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation
- in-vitro, Melanoma, B16-F10
OS↑, DCells↑, T-Cell↑, Apoptosis↑, IL1↑, IFN-γ↓, IL10↑, TumCG↓, ROS↑,
221- MFrot,  MF,    Low Frequency Magnetic Fields Enhance Antitumor Immune Response against Mouse H22 Hepatocellular Carcinoma
- in-vivo, Liver, NA
OS↑, TumCG↓, IL6↓, GM-CSF↓, CXCc↓, Macrophages↑, DCells↑, CD4+↑, CD8+↑, IL12↑,
222- MFrot,  MF,    LF-MF inhibits iron metabolism and suppresses lung cancer through activation of P53-miR-34a-E2F1/E2F3 pathway
- in-vitro, Lung, A549
TumCG↓, OS↑, miR-34a↑, E2Fs↓, P53↑, TfR1/CD71↓, Ferritin↓,
223- MFrot,  MF,    The effect of rotating magnetic fields on the growth of Deal's guinea pig sarcoma transplanted subcutaneously in guinea pigs
- in-vivo, NA, NA
TumCG↓,
656- MNPs,  MF,    Effects of combined delivery of extremely low frequency electromagnetic field and magnetic Fe3O4 nanoparticles on hepatic cell lines
- in-vitro, HCC, HepG2 - in-vitro, Nor, HL7702
BioAv↑, Apoptosis↑, *toxicity↓,
356- SNP,  MF,    Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study
- in-vitro, BC, MCF-7 - in-vitro, Bladder, HTB-22
Apoptosis↑, P53↑, iNOS↑, NF-kB↑, Bcl-2↓, ROS↑, SOD↑, TumCCA↑, eff↑, Catalase↑, other↑,
400- SNP,  MF,    Polyvinyl Alcohol Capped Silver Nanostructures for Fortified Apoptotic Potential Against Human Laryngeal Carcinoma Cells Hep-2 Using Extremely-Low Frequency Electromagnetic Field
- in-vitro, Laryn, HEp2
TumCP↓, Casp3↑, P53↑, Beclin-1↑, TumAuto↑, GSR↑, ROS↑, MDA↑, ROS↑, SIRT1↑, Ca+2↑, Endon↑, DNAdam↑, Apoptosis↑, NF-kB↓,
402- SNP,  MF,    Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study
- in-vitro, BC, MCF-7
P53↑, iNOS↑, NF-kB↑, Bcl-2↓, miR-125b↓, ROS↑, SOD↑,
593- VitC,  MF,    Protective Effect of Ascorbic Acid on Molecular Behavior Changes of Hemoglobin Induced by Magnetic Field Induced by Magnetic Field
RPM↓,
588- VitC,  MF,    Preparation of magnetic nanoparticle integrated nanostructured lipid carriers for controlled delivery of ascorbyl palmitate
other↑,
580- VitC,  MF,    Extremely low frequency magnetic field induces oxidative stress in mouse cerebellum
- in-vivo, Nor, NA
*other↓, *MDA↓, *GPx∅, *SOD↑, *GSH∅,
579- VitC,  MF,    Effect of Magnetic Field on Ascorbic Acid Oxidase Activity, I
- in-vitro, NA, NA
other↝,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 243

Results for Effect on Cancer/Diseased Cells:
ACAA1↓,1,   ADP:ATP↓,2,   Akt↓,3,   p‑Akt↓,3,   ALAT↓,1,   angioG↓,7,   angioG↑,1,   AntiCan↑,2,   AntiTum↑,1,   Apoptosis↑,31,   Appetite↑,2,   ATF3↑,1,   ATG5↑,1,   ATM↑,1,   ATP↓,1,   ATP↑,2,   ATP⇅,1,   ATP∅,1,   p‑BAD↓,1,   Bak↑,1,   BAX↑,4,   BCAP↓,1,   Bcl-2↓,5,   Beclin-1↑,2,   BioAv↑,1,   BMD↑,1,   BMPs↑,1,   BowelM↑,2,   breath↑,2,   Ca+2↓,1,   Ca+2↑,24,   Ca+2↝,2,   i-Ca+2↑,1,   CAFs/TAFs↓,1,   Calcium↑,1,   cAMP⇅,1,   Cartilage↑,1,   Casp↑,1,   Casp3↓,1,   Casp3↑,8,   cl‑Casp3↑,1,   Casp7↓,1,   Casp7↑,4,   Casp9↑,3,   Catalase↓,1,   Catalase↑,3,   CCDC150↓,1,   CD133↓,1,   CD4+↓,1,   CD4+↑,1,   CD44↓,1,   CD8+↓,1,   CD8+↑,1,   CellMemb↑,7,   chemoP↑,1,   ChemoSen↑,9,   ChemoSen∅,1,   ChemoSideEff↓,1,   p‑CHK1↓,1,   Chk2↑,2,   CHOP↑,1,   cMyc↓,1,   cognitive↑,2,   COL4↓,1,   COX2↓,1,   CSCs↓,2,   CXCc↓,1,   CycB↓,1,   Cyt‑c↑,4,   Cyt‑c↝,1,   DCells↑,2,   DHCR24↑,1,   Diff↑,1,   DNAdam↑,12,   Dose?,1,   Dose↝,4,   Dose∅,2,   E2Fs↓,1,   ECAR↓,1,   ECM/TCF↓,1,   eff↓,10,   eff↑,27,   eff⇅,1,   eff↝,13,   EGFR↓,1,   EGFR↝,1,   p‑EGFR↓,1,   Endon↑,1,   EPR↑,2,   ER Stress↓,1,   ER Stress↑,3,   ERK↑,1,   p‑ERK↑,2,   p‑ERK↝,1,   F-actin↓,1,   FABP4↓,1,   Fenton↑,1,   Ferritin↓,1,   Ferroptosis↑,1,   FOSB↑,1,   FOXP3↓,1,   GlucoseCon↓,1,   Glycolysis↓,2,   Glycolysis∅,1,   GM-CSF↓,1,   GPx↓,1,   GPx1↓,1,   GPx1↑,1,   GPx4↓,1,   GRP78/BiP↑,2,   GRP94↑,1,   GSH↓,1,   GSH/GSSG↓,2,   GSK‐3β↑,1,   GSR↑,1,   H2O2↑,4,   mt-H2O2↑,1,   Hif1a↓,1,   HSP70/HSPA5↓,2,   HSP70/HSPA5↑,7,   HSP70/HSPA5∅,1,   HSP90↓,2,   HSPs↑,1,   HSPs∅,1,   IFN-γ↓,1,   IL1↑,1,   IL10↑,2,   IL12↑,1,   IL17↓,2,   IL22↓,1,   IL23↓,1,   IL28↓,1,   IL6↓,1,   IL6↑,1,   IL9↓,1,   iNOS↑,2,   Iron↑,1,   ITGA1∅,1,   ITGA11↓,1,   ITGA5∅,1,   ITGB1∅,1,   ITGB3∅,1,   ITGB4∅,1,   JNK↑,1,   lactateProd↑,1,   LAMB3↑,1,   LC3II↑,1,   LIF↑,1,   lysoMP↓,2,   lysoMP↑,2,   Macrophages↑,1,   MAPK↓,1,   MAPK↑,3,   MDA↑,2,   miR-125b↓,1,   miR-126↓,1,   miR-129-5p↑,1,   miR-155↑,1,   miR-200c↓,1,   miR-21↑,1,   miR-210↑,1,   miR-34a↑,1,   miR-486↑,1,   mitResp↓,1,   mitResp↑,1,   MMP?,1,   MMP↓,6,   MMP↑,1,   MMP1↑,1,   MMP2↓,1,   MMP2↑,2,   MMP2∅,1,   MMP3↑,1,   MMP9↓,1,   MMP9↑,1,   MMP9∅,1,   MMPs↓,1,   MPT↑,2,   mtDam↑,1,   mTOR↓,1,   Nanog↓,1,   Necroptosis↑,1,   necrosis↑,1,   NF-kB↓,1,   NF-kB↑,2,   NO↑,1,   nucleolin↑,1,   OCR↓,1,   OCR↑,1,   OS↑,13,   other↓,3,   other↑,5,   other↝,2,   other∅,1,   OXPHOS↑,3,   P-gp↓,1,   P21↑,2,   p38↑,3,   P53↑,6,   P53↝,1,   p62↑,1,   Pain↓,4,   cl‑PARP↑,2,   PCK1↓,1,   PD-L1↑,1,   PGC-1α↑,1,   i-pH↑,1,   PI3K↓,2,   PKM2↓,1,   PleEff↓,1,   PLIN1↓,1,   PPARγ↑,1,   Prx6↑,1,   PTEN↓,1,   Pyruv↓,2,   QoL↑,1,   radioP↑,1,   RadioS↑,4,   RANTES↓,1,   RAS↑,1,   Rho↓,1,   ROS↑,46,   ROS↝,2,   mt-ROS↑,2,   RPM↓,1,   RPM↑,7,   SDH↓,2,   selectivity↑,20,   SIRT1↑,1,   SIRT3↑,1,   Sleep↑,1,   Slug↓,1,   p‑SMAD2↓,1,   SMAD3↓,1,   p‑SMAD3↓,1,   SOD↓,3,   SOD↑,2,   SOD1↓,1,   SOD1↑,1,   SOD2↓,1,   SOD2↑,2,   SOX2↓,1,   STAT3↑,1,   p‑STAT3↑,1,   Strength↑,3,   survivin↓,1,   T-Cell↑,1,   TCA?,1,   TfR1/CD71↓,1,   TGF-β↓,2,   THBS2↓,1,   Thiols↓,1,   TNF-α↓,2,   TNF-α↑,1,   TRAIL↓,1,   TRPV1↑,1,   TumAuto↑,6,   TumCCA↑,9,   TumCD↑,10,   TumCD∅,1,   TumCG↓,20,   TumCI↓,5,   TumCMig↓,6,   TumCP↓,15,   TumCP∅,1,   tumCV↓,5,   TumMeta↓,4,   TumVol↓,12,   Twist↓,1,   UCP1↓,1,   UPR↑,2,   VEGF↓,1,   VEGF↑,1,   VEGFR2↓,2,   VGCC↑,1,   Vim↓,1,   Warburg↓,1,   Weight↑,1,   β-catenin/ZEB1↓,2,   γH2AX↑,1,   p‑γH2AX↑,1,  
Total Targets: 281

Results for Effect on Normal Cells:
5HT↓,1,   5HT↑,2,   Ach↑,1,   AChE↓,1,   ADP:ATP↓,1,   Akt↓,2,   Akt↑,2,   p‑Akt↓,1,   p‑Akt↑,1,   ALDH↑,1,   ALP↑,2,   ALP∅,1,   AMPK↑,1,   angioG↑,7,   angioG↝,1,   AntiAge↑,1,   antiOx↑,9,   Apoptosis↓,6,   APP∅,1,   ARG↑,1,   ATP↑,2,   Aβ?,1,   Aβ↓,9,   Aβ∅,2,   BACE↓,1,   BAD↓,1,   BAX↓,3,   BBB↑,1,   Bcl-2↑,1,   Bcl-2∅,1,   Bcl-xL↑,1,   BDNF↑,10,   BioAv↓,1,   BioAv↑,1,   BioEnh↑,4,   BMD↑,9,   BMP2↑,2,   BMPs↓,1,   BMPs↑,1,   Ca+2↓,5,   Ca+2↑,10,   Ca+2∅,1,   i-Ca+2↓,1,   cAMP↑,2,   cardioP↑,3,   Cartilage↑,2,   Casp1↓,1,   cl‑Casp1↓,1,   proCasp1↓,1,   Casp3↓,2,   Catalase↑,8,   CD4+↑,1,   CDK5↓,1,   cFos↑,1,   cognitive↑,19,   cognitive∅,1,   COL1∅,1,   COL2A1↑,2,   COX2↓,2,   p‑CREB↑,1,   CXCc↓,1,   Cyt‑c↑,2,   cytoP↑,1,   Diff↓,1,   Diff↑,8,   Dose↝,16,   Dose∅,1,   E2Fs↑,1,   ECAR↓,1,   eff↓,5,   eff↑,16,   eff↝,4,   EGR4↑,1,   ER Stress↑,1,   ERK↓,1,   ERK↑,2,   p‑ERK↓,1,   p‑ERK↑,2,   F-actin↑,1,   FABP4↓,1,   FAK↑,2,   FAO↓,1,   FAO↑,1,   FGF↑,5,   GLUT1↑,2,   GLUT4↑,1,   Glycolysis↓,1,   Glycolysis↑,2,   GM-CSF↑,1,   GPx↑,4,   GPx∅,1,   GPx1↑,5,   GPx3↑,1,   GPx4↑,5,   GSDMD?,1,   GSDMD↓,1,   GSH↑,1,   GSH∅,1,   GSK‐3β↓,1,   p‑GSK‐3β↑,1,   GSR↑,3,   GSSG↓,1,   GutMicro↑,1,   hepatoP↑,1,   HEY1↑,1,   HGF/c-Met↑,1,   HIF-1↓,1,   Hif1a↑,2,   Hif1a↝,1,   Hif1a∅,2,   HIF2a↑,1,   HK2↑,2,   HO-1↑,1,   HSP70/HSPA5↑,5,   HSPs↑,1,   IFN-γ↓,1,   IGF-1↑,1,   p‑IKKα↓,2,   IL1↓,2,   IL1↑,1,   IL10↑,5,   IL17↓,1,   IL1β↓,6,   IL1β↑,1,   IL2↑,1,   IL4↑,1,   IL6↓,6,   IL6↑,1,   IL8↓,2,   Inflam↓,25,   Inflam∅,1,   iNOS↓,3,   iNOS↑,1,   Insulin↓,1,   IP-10/CXCL-10↑,1,   ITGB1↑,1,   p‑IκB↓,1,   p‑JNK↓,1,   p‑JNK↑,3,   Keap1↓,1,   lactateProd↓,1,   LDH↓,1,   LDHB↑,1,   MAPK↓,1,   MAPK↑,2,   MCP1↓,1,   MCP1↑,2,   MDA↓,5,   MDA↑,1,   memory↑,19,   memory∅,2,   MIP‑1α↓,1,   miR-34b-5p↓,1,   mitResp↓,1,   MMP↑,2,   MMP↝,1,   MMP∅,1,   MMP-10↓,1,   MMP1↓,1,   MMP2↑,2,   MMP9↓,3,   MMP9↑,2,   MMPs↑,1,   Mood⇅,1,   motorD↑,10,   mPGES-1↓,1,   MPT↑,1,   MSCs↑,1,   mTOR↓,3,   mTOR↑,2,   mTOR↝,1,   MyD88↓,1,   NAD↑,1,   necrosis↓,1,   Netrins↑,1,   neuroP↑,18,   NF-kB↓,6,   NGF↑,1,   NLRP3↓,2,   NO↓,4,   NO↑,5,   NOTCH↑,1,   NOTCH1↑,1,   NPY↑,1,   NRF2↑,3,   NSE↑,1,   OCN↑,1,   OCN∅,1,   OPN↑,1,   OS↑,1,   other?,2,   other↓,2,   other↑,10,   other↝,9,   OXPHOS↓,2,   OXPHOS↑,2,   p38↑,2,   p‑p38↓,1,   p‑p65↓,1,   p‑P70S6K↑,1,   Pain↓,4,   PDGF↑,1,   PDGFR-BB↑,1,   PFKL↑,2,   PFKM↑,2,   PFKP↑,1,   PGC-1α↑,2,   PGE2↓,3,   PGE2↑,1,   pH↑,1,   PI3K↓,1,   PI3K↑,1,   PKA↑,1,   PKCδ↓,1,   PKM2↑,2,   PONs↓,1,   PPARγ↓,1,   PPP↓,1,   PSD95↑,1,   PTEN↑,1,   QoL↑,3,   RKIP↑,1,   ROMO1↑,1,   ROS↓,28,   ROS↑,7,   ROS∅,1,   mt-ROS↑,1,   RUNX2↑,1,   RUNX2∅,1,   selectivity↑,2,   SMAD4↑,1,   SMAD5↑,1,   SOD↑,9,   SOD1↑,5,   SOD2↓,1,   SOD2↑,5,   SOX9↑,2,   SREBP1↓,1,   STAC2↑,1,   STAT3↓,2,   p‑STAT3↓,1,   TAC↑,1,   p‑tau↓,2,   TCA↑,1,   TGF-β↑,4,   TGF-β1↑,1,   TIMP1↑,2,   TIMP2↑,1,   TLR4↓,1,   TNF-α↓,8,   TNF-α↑,1,   toxicity?,1,   toxicity↓,4,   toxicity∅,9,   Treg lymp↓,1,   TREM-1↓,1,   Trx↓,1,   TumCG↑,1,   TumCG∅,1,   TumCMig↑,1,   tumCV↑,1,   VEGF↓,1,   VEGF↑,11,   VEGFR2↑,1,   VGCC↑,1,   Weight∅,1,   Wnt↑,3,   YAP/TEAD↑,1,   β-Amyloid↓,1,   β-catenin/ZEB1↑,4,   β-Endo↑,1,  
Total Targets: 271

Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:172  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page