MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


HPT, Hyperthermia: Click to Expand ⟱
Features:
Mild Hyperthermia (Approximately 39°C to 41°C
Pathways and Effects:
-Heat Shock Protein (HSP) Induction: Mild heat stress triggers the production of HSPs (e.g., HSP70, HSP90) that help cells cope with stress, which can sometimes provide a transient protective effect. However, these proteins can also act as immunomodulators.
-Modulation of the Immune System: Mild hyperthermia can enhance dendritic cell activation and improve antigen presentation, leading to the stimulation of anti-tumor immune responses.
-Vasodilation: Increased blood flow and improved oxygenation can sensitize tumors to radiation therapy and certain chemotherapeutics.

Moderate Hyperthermia (Approximately 41°C to 43°C)
Pathways and Effects:
-Enhanced Cytotoxicity: At temperatures in this range, tumor cells become more vulnerable to radiation and some chemotherapeutic agents. This is partly due to the inhibition of DNA repair pathways.
-Increased Permeability: Moderate heat can increase the permeability of cellular membranes, aiding in drug delivery and the uptake of chemotherapeutic agents.
-Induction of Apoptosis: Elevated temperatures can trigger apoptotic signaling pathways in cancer cells, sometimes in conjunction with other therapies.

High Hyperthermia / Thermal Ablation (Approximately 43°C to 50°C and above)
Pathways and Effects:
-Direct Cytotoxicity: High temperatures can lead to protein denaturation, membrane disruption, and direct cell death.
-Coagulative Necrosis: Sustained high temperatures cause irreversible cell injury leading to necrosis of tumor tissues.
-Vascular Damage: Hyperthermia in this range can damage tumor vasculature, reducing blood supply and indirectly causing tumor cell death.
-Enhanced Immune Response: Although high temperatures can cause immediate cell death, the release of tumor antigens and damage-associated molecular patterns (DAMPs) can stimulate an anti-tumor immune response


Scientific Papers found: Click to Expand⟱
2252- MF,  HPT,    Cellular Response to ELF-MF and Heat: Evidence for a Common Involvement of Heat Shock Proteins?
- Review, NA, NA
HSPs∅, In some studies, no HSP-related effects were detected after ELF-MF exposure ranging from a few μT to mT and from minutes to 24 h, using different cell types such as astroglial cells (30), HL-60, H9c2, and Girardi heart cells (31, 32), and human kerat
*HSPs↑, exposure has also caused changes in HSP levels in a number of primary or non-transformed (“primary like”) cell lines.
eff↝, The hypothesis that non-stressed cells or organisms are quite responsive to HSP induction after ELF-MF exposure is strengthened by some in vivo studies in invertebrates
*eff↑, ELF-MF Exposure Potentiates the Effects of Heat on HSP Induction
eff↑, Interestingly, when HeLa and HL-60 cancer cells were subjected to comparable magnetic flux densities (10–140 µT), exposure durations (20–30 min) and concurrently heat stressed at 43°C, a stronger HSP70 expression was attained in coexposed cells
eff↓, An interesting finding is that MF exposure provides protection against heat-induced effects such as apoptosis, cell cycle disturbances, or proliferation inhibition in both cell models and in organisms

2256- MF,  HPT,    Effects of exposure to repetitive pulsed magnetic stimulation on cell proliferation and expression of heat shock protein 70 in normal and malignant cells
- in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Nor, HBL-100
HSP70/HSPA5↑, HSP70 expression was increased by RPMS exposure under thermal stress at 40 degrees C and 42 degrees C in HBL-100 and HeLa.
HSP70/HSPA5∅, HSP70 was not affected by RPMS at 37°C (Fig. 5A).

2257- MF,  HPT,    HSP70 Inhibition Synergistically Enhances the Effects of Magnetic Fluid Hyperthermia in Ovarian Cancer
- in-vitro, Ovarian, NA
eff↑, HSP70 inhibition combination with MFH generate a synergistic effect and could be a promising target to enhance MFH therapeutic outcomes in ovarian cancer.
eff↑, A significantly reduction in tumor growth rate was observed with combination therapy


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
eff↓,1,   eff↑,3,   eff↝,1,   HSP70/HSPA5↑,1,   HSP70/HSPA5∅,1,   HSPs∅,1,  
Total Targets: 6

Results for Effect on Normal Cells:
eff↑,1,   HSPs↑,1,  
Total Targets: 2

Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:172  Target#:%  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page