Database Query Results : Magnetic Fields, , cardioP

MF, Magnetic Fields: Click to Expand ⟱
Features: Therapy
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range.
The main pathways affected are:
Calcium Signaling: -influence the activity of voltage-gated calcium channels.
Oxidative Stress and Reactive Oxygen Species (ROS) Pathways
Heat Shock Proteins (HSPs) and Cellular Stress Responses
Cell Proliferation and Growth Signaling: MAPK/ERK pathway.
Gene Expression and Epigenetic Modifications: NF-κB
Angiogenesis Pathways: VEGF (improving VEGF for normal cells)
PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models

Pathways:
- most reports have ROS production increasing in cancer cells , while decreasing in normal cells.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells),
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


cardioP, cardioProtective: Click to Expand ⟱
Source:
Type:
CardioProtective


Scientific Papers found: Click to Expand⟱
3467- MF,    Pulsed Magnetic Field Induces Angiogenesis and Improves Cardiac Function of Surgically Induced Infarcted Myocardium in Sprague-Dawley Rats
- in-vivo, Nor, NA
*angioG↑, 15 Hz 6 mT PMF promotes myocardial angiogenesis and improves cardiac function after MI in rats.
*cardioP↑,

4112- MF,    Novel protective effects of pulsed electromagnetic field ischemia/reperfusion injury rats
- in-vivo, Stroke, NA
*cardioP↑, in vivo results showed that per-treatment of PEMF could significantly improve the cardiac function in I/R injury group
*Bcl-2↑, up-regulating the expression of anti-apoptosis protein B-cell lymphoma 2 (Bcl-2) and down-regulating the expression of pro-apoptosis protein (Bax)
*BAX↓,
*ROS↓, PEMF treatment could significantly reduce the apoptosis and reactive oxygen species (ROS) levels in primary neonatal rat cardiac ventricular myocytes (NRCMs) induced by hypoxia/reoxygenation (H/R)

3482- MF,    Pulsed Electromagnetic Fields Increase Angiogenesis and Improve Cardiac Function After Myocardial Ischemia in Mice
- in-vitro, NA, NA
*cardioP↑, PEMF treatment with 30 Hz 3.0 mT significantly improved heart function.
*VEGF↑, PEMF treatment with 15 Hz 1.5 mT and 30 Hz 3.0 mT both increased capillary density, decreased infarction area size, increased the protein expression of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2
*VEGFR2↑,
*Hif1a↑, and increased the mRNA level of VEGF and hypoxia inducible factor 1-alpha (HIF-1α) in the infarct border zone.
*FGF↑, Additionally, treatment with 30 Hz 3.0 mT also increased protein and mRNA level of fibroblast growth factor 2 (FGF2), and protein level of β1 integrin, and shows a stronger therapeutic effect.
*ITGB1↑,
*angioG↑, PEMFs Improve Angiogenesis In Vivo


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:

Total Targets: 0

Results for Effect on Normal Cells:
angioG↑,2,   BAX↓,1,   Bcl-2↑,1,   cardioP↑,3,   FGF↑,1,   Hif1a↑,1,   ITGB1↑,1,   ROS↓,1,   VEGF↑,1,   VEGFR2↑,1,  
Total Targets: 10

Scientific Paper Hit Count for: cardioP, cardioProtective
3 Magnetic Fields
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:172  Target#:1188  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page