Features: Therapy |
Magnetic Fields can be Static, or pulsed. The most common therapy is a pulsed magnetic field in the uT or mT range. The main pathways affected are: Calcium Signaling: -influence the activity of voltage-gated calcium channels. Oxidative Stress and Reactive Oxygen Species (ROS) Pathways Heat Shock Proteins (HSPs) and Cellular Stress Responses Cell Proliferation and Growth Signaling: MAPK/ERK pathway. Gene Expression and Epigenetic Modifications: NF-κB Angiogenesis Pathways: VEGF (improving VEGF for normal cells) PEMF was found to have a 2-fold increase in drug uptake compared to traditional electrochemotherapy in rat melanoma models Pathways: - most reports have ROS production increasing in cancer cells , while decreasing in normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, VEGF↓(mostly regulated up in normal cells), - cause Cell cycle arrest : TumCCA↑, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, GLUT1↓, LDH↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, ITG">Integrins↓, - Others: PI3K↓, AKT↓, STAT↓, Wnt↓, β-catenin↓, ERK↓, JNK, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, cytoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
2612- | Ba,  | MF,  |   | The effect of a static magnetic field and baicalin or baicalein interactions on amelanotic melanoma cell cultures (C32) |
- | in-vitro, | Melanoma, | NA |
2018- | CAP,  | MF,  |   | Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma |
- | Review, | HCC, | NA |
654- | EGCG,  | MNPs,  | MF,  |   | Characterization of mesenchymal stem cells with augmented internalization of magnetic nanoparticles: The implication of therapeutic potential |
- | in-vitro, | Var, | NA |
657- | EGCG,  | MNPs,  | MF,  |   | Interaction of poly-l-lysine coating and heparan sulfate proteoglycan on magnetic nanoparticle uptake by tumor cells |
- | in-vitro, | GBM, | U87MG |
658- | EGCG,  | MNPs,  | MF,  |   | Laminin Receptor-Mediated Nanoparticle Uptake by Tumor Cells: Interplay of Epigallocatechin Gallate and Magnetic Force at Nano-Bio Interface |
- | in-vitro, | GBM, | LN229 |
659- | EGCG,  | MNPs,  | MF,  |   | Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction |
- | in-vivo, | Nor, | NA |
401- | GoldNP,  | MF,  |   | In vitro evaluation of electroporated gold nanoparticles and extremely-low frequency electromagnetic field anticancer activity against Hep-2 laryngeal cancer cells |
- | in-vitro, | Laryn, | HEp2 |
2246- | MF,  |   | The Use of Pulsed Electromagnetic Field to Modulate Inflammation and Improve Tissue Regeneration: A Review |
- | in-vitro, | Nor, | NA |
2242- | MF,  |   | Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair |
- | in-vitro, | Nor, | NA |
2247- | MF,  |   | Effects of Pulsed Electromagnetic Field Treatment on Skeletal Muscle Tissue Recovery in a Rat Model of Collagenase-Induced Tendinopathy: Results from a Proteome Analysis |
- | in-vivo, | Nor, | NA |
2248- | MF,  |   | Magnetic fields modulate metabolism and gut microbiome in correlation with Pgc-1α expression: Follow-up to an in vitro magnetic mitohormetic study |
- | in-vivo, | Nor, | NA |
2249- | MF,  |   | Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study |
- | in-vitro, | Nor, | L929 |
2250- | MF,  | MNPs,  |   | Confronting stem cells with surface-modified magnetic nanoparticles and low-frequency pulsed electromagnetic field |
- | Review, | NA, | NA |
2251- | MF,  | Rad,  |   | BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage |
- | in-vitro, | Lung, | A549 | - | in-vitro, | HNSCC, | UTSCC15 | - | in-vitro, | CRC, | DLD1 | - | in-vitro, | PC, | MIA PaCa-2 |
2252- | MF,  | HPT,  |   | Cellular Response to ELF-MF and Heat: Evidence for a Common Involvement of Heat Shock Proteins? |
- | Review, | NA, | NA |
2253- | MF,  |   | Low-frequency pulsed electromagnetic field promotes functional recovery, reduces inflammation and oxidative stress, and enhances HSP70 expression following spinal cord injury |
- | in-vivo, | Nor, | NA |
2254- | MF,  |   | Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vivo study |
- | in-vivo, | Nor, | NA |
2255- | MF,  |   | Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative Stress |
- | in-vitro, | Nor, | SkMC |
2256- | MF,  | HPT,  |   | Effects of exposure to repetitive pulsed magnetic stimulation on cell proliferation and expression of heat shock protein 70 in normal and malignant cells |
- | in-vitro, | BC, | MCF-7 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Nor, | HBL-100 |
2257- | MF,  | HPT,  |   | HSP70 Inhibition Synergistically Enhances the Effects of Magnetic Fluid Hyperthermia in Ovarian Cancer |
- | in-vitro, | Ovarian, | NA |
2260- | MF,  |   | Alternative magnetic field exposure suppresses tumor growth via metabolic reprogramming |
- | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | LN229 | - | in-vivo, | NA, | NA |
2245- | MF,  |   | Quantum based effects of therapeutic nuclear magnetic resonance persistently reduce glycolysis |
- | in-vitro, | Nor, | NIH-3T3 |
2244- | MF,  |   | Little strokes fell big oaks: The use of weak magnetic fields and reactive oxygen species to fight cancer |
- | Review, | Var, | NA |
2243- | MF,  |   | Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: an in-vitro study |
- | in-vitro, | Nor, | NA |
192- | MF,  |   | The use of magnetic fields in treatment of patients with rheumatoid arthritis. Review of the literature |
- | Review, | Arthritis, | NA |
2241- | MF,  |   | Pulsed electromagnetic therapy in cancer treatment: Progress and outlook |
- | Review, | Var, | NA |
2240- | MF,  |   | Pulsed electromagnetic field induces Ca2+-dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca2+/Wnt-β-catenin signaling pathway |
- | in-vitro, | Nor, | C3H10T1/2 |
2239- | MF,  |   | Time-varying magnetic fields increase cytosolic free Ca2+ in HL-60 cells |
- | in-vitro, | AML, | HL-60 |
2238- | MF,  |   | Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects |
- | Review, | Var, | NA |
2237- | MF,  |   | The Effect of Pulsed Electromagnetic Field Stimulation of Live Cells on Intracellular Ca2+ Dynamics Changes Notably Involving Ion Channels |
- | in-vitro, | AML, | KG-1 | - | in-vitro, | Nor, | HUVECs |
2236- | MF,  |   | Changes in Ca2+ release in human red blood cells under pulsed magnetic field |
- | in-vitro, | Nor, | NA |
2235- | MF,  |   | Increase of intracellular Ca2+ concentration in Listeria monocytogenes under pulsed magnetic field |
- | in-vitro, | Inf, | NA |
1762- | MF,  | Fe,  |   | Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane |
- | in-vitro, | RCC, | NA |
594- | MF,  | VitC,  |   | Static Magnetic Field Effect on the Fremy's Salt-Ascorbic Acid Chemical Reaction Studied by Continuous-Wave Electron Paramagnetic Resonance |
- | Analysis, | NA, | NA |
592- | MF,  | VitC,  |   | Alternative radical pairs for cryptochrome-based magnetoreception |
3487- | MF,  | Rad,  |   | High-specificity protection against radiation-induced bone loss by a pulsed electromagnetic field |
- | Review, | Var, | NA |
3479- | MF,  |   | Evaluation of Pulsed Electromagnetic Field Effects: A Systematic Review and Meta-Analysis on Highlights of Two Decades of Research In Vitro Studies |
- | Review, | NA, | NA |
3480- | MF,  |   | Cellular and Molecular Effects of Magnetic Fields |
- | Review, | NA, | NA |
3481- | MF,  |   | No effects of pulsed electromagnetic fields on expression of cell adhesion molecules (integrin, CD44) and matrix metalloproteinase-2/9 in osteosarcoma cell lines |
- | in-vitro, | OS, | MG63 | - | in-vitro, | OS, | SaOS2 |
3482- | MF,  |   | Pulsed Electromagnetic Fields Increase Angiogenesis and Improve Cardiac Function After Myocardial Ischemia in Mice |
- | in-vitro, | NA, | NA |
3483- | MF,  |   | Pulsed Electromagnetic Fields Protect Against Brain Ischemia by Modulating the Astrocytic Cholinergic Anti-inflammatory Pathway |
- | NA, | Stroke, | NA |
3484- | MF,  |   | Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2 − and H2O2 |
- | in-vitro, | Nor, | NA |
3485- | MF,  |   | Cytoprotective effects of low-frequency pulsed electromagnetic field against oxidative stress in glioblastoma cells |
- | in-vitro, | GBM, | U87MG |
3486- | MF,  |   | Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death |
- | in-vitro, | NA, | NA |
3478- | MF,  |   | One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study |
- | Trial, | BC, | NA | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | C2C12 |
3498- | MF,  |   | Effect of Static Magnetic Field on Oxidant/Antioxidant Parameters in Cancerous and Noncancerous Human Gastric Tissues |
- | in-vitro, | GC, | NA |
3500- | MF,  |   | Moderate Static Magnet Fields Suppress Ovarian Cancer Metastasis via ROS-Mediated Oxidative Stress |
- | in-vitro, | Ovarian, | SKOV3 |
3501- | MF,  |   | Unveiling the Power of Magnetic-Driven Regenerative Medicine: Bone Regeneration and Functional Reconstruction |
- | Review, | NA, | NA |
3536- | MF,  |   | Targeting Mesenchymal Stromal Cells/Pericytes (MSCs) With Pulsed Electromagnetic Field (PEMF) Has the Potential to Treat Rheumatoid Arthritis |
- | Review, | Arthritis, | NA | - | Review, | Stroke, | NA |
3566- | MF,  |   | Positive and Negative Effects of Administering a Magnetic Field to Patients with Rheumatoid Arthritis (RA) |
- | Study, | Arthritis, | NA |
3568- | MF,  |   | The Efficacy of Pulsed Electromagnetic Fields on Pain, Stiffness, and Physical Function in Osteoarthritis: A Systematic Review and Meta-Analysis |
- | Review, | Arthritis, | NA |
3569- | MF,  |   | Current Evidence Using Pulsed Electromagnetic Fields in Osteoarthritis: A Systematic Review |
- | Review, | Arthritis, | NA |
2261- | MF,  |   | Tumor-specific inhibition with magnetic field |
- | in-vitro, | Nor, | GP-293 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Lung, | A549 |
3477- | MF,  |   | Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis |
- | Review, | NA, | NA |
3476- | MF,  |   | Pulsed Electromagnetic Fields Stimulate HIF-1α-Independent VEGF Release in 1321N1 Human Astrocytes Protecting Neuron-like SH-SY5Y Cells from Oxygen-Glucose Deprivation |
- | in-vitro, | Stroke, | 1321N1 | - | in-vitro, | Park, | NA |
3475- | MF,  |   | A Pulsed Electromagnetic Field Protects against Glutamate-Induced Excitotoxicity by Modulating the Endocannabinoid System in HT22 Cells |
- | in-vitro, | Nor, | HT22 | - | Review, | AD, | NA |
3474- | MF,  |   | Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regeneration |
- | in-vitro, | Nor, | NA |
3473- | MF,  |   | Therapeutic use of pulsed electromagnetic field therapy reduces prostate volume and lower urinary tract symptoms in benign prostatic hyperplasia |
- | Human, | BPH, | NA |
3472- | MF,  |   | Pulsed electromagnetic field alleviates synovitis and inhibits the NLRP3/Caspase-1/GSDMD signaling pathway in osteoarthritis rats |
- | in-vivo, | ostP, | NA |
3471- | MF,  |   | The prevention effect of pulsed electromagnetic fields treatment on senile osteoporosis in vivo via improving the inflammatory bone microenvironment |
- | in-vivo, | Nor, | NA |
3470- | MF,  |   | Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8+ T cell dysfunction and suppress cervical cancer progression |
- | in-vitro, | Cerv, | HeLa |
3469- | MF,  |   | Pulsed Electromagnetic Fields (PEMF)—Physiological Response and Its Potential in Trauma Treatment |
- | Review, | NA, | NA |
3468- | MF,  |   | An integrative review of pulsed electromagnetic field therapy (PEMF) and wound healing |
- | Review, | NA, | NA |
3463- | MF,  |   | Pulsed Electromagnetic Fields Alleviates Hepatic Oxidative Stress and Lipids Accumulation in db/db mice |
- | in-vivo, | NA, | NA |
3462- | MF,  |   | The Effect of a Static Magnetic Field on microRNA in Relation to the Regulation of the Nrf2 Signaling Pathway in a Fibroblast Cell Line That Had Been Treated with Fluoride Ions |
- | in-vitro, | Nor, | NA |
3459- | MF,  |   | EFFECT OF PULSED ELECTROMAGNETIC FIELDS ON ENDOPLASMIC RETICULUM STRESS |
- | in-vitro, | Cerv, | HeLa |
3458- | MF,  |   | Magnetic Control of Protein Expression via Magneto-mechanical Actuation of ND-PEGylated Iron Oxide Nanocubes for Cell Therapy |
- | in-vitro, | GBM, | NA |
3457- | MF,  |   | Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis |
- | Review, | Var, | NA |
507- | MF,  |   | Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanism |
- | in-vitro, | Liver, | HepG2 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | GP-293 |
499- | MF,  |   | The Effect of Pulsed Electromagnetic Fields on Angiogenesis |
- | Review, | NA, | NA |
500- | MF,  |   | Anti-Oxidative and Immune Regulatory Responses of THP-1 and PBMC to Pulsed EMF Are Field-Strength Dependent |
- | in-vitro, | AML, | THP1 |
501- | MF,  |   | Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell Viability |
- | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF10 |
502- | MF,  |   | Electromagnetic field investigation on different cancer cell lines |
- | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Colon, | SW480 | - | in-vitro, | CRC, | HCT116 |
503- | MF,  |   | Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation |
- | in-vitro, | NA, | PC12 |
504- | MF,  |   | Effect of Magnetic Fields on Tumor Growth and Viability |
- | in-vivo, | NA, | NA |
505- | MF,  |   | Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach |
- | Case Report, | NA, | NA |
506- | MF,  | doxoR,  |   | Pulsed Electromagnetic Field Stimulation Promotes Anti-cell Proliferative Activity in Doxorubicin-treated Mouse Osteosarcoma Cells |
- | in-vitro, | OS, | LM8 |
498- | MF,  |   | Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study |
- | in-vitro, | NA, | NA |
508- | MF,  | doxoR,  |   | Synergistic cytotoxic effects of an extremely low-frequency electromagnetic field with doxorubicin on MCF-7 cell line |
- | in-vitro, | BC, | MCF-7 |
- | Review, | NA, | NA |
510- | MF,  |   | Effect of a 9 mT pulsed magnetic field on C3H/Bi female mice with mammary carcinoma. A comparison between the 12 Hz and the 460 Hz frequencies |
- | in-vivo, | NA, | NA |
511- | MF,  |   | Optimization of a therapeutic electromagnetic field (EMF) to retard breast cancer tumor growth and vascularity |
- | in-vivo, | NA, | NA |
512- | MF,  |   | Pulsed Electromagnetic Fields (PEMFs) Trigger Cell Death and Senescence in Cancer Cells |
- | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | FF95 |
590- | MF,  | VitC,  |   | Sub-millitesla magnetic field effects on the recombination reaction of flavin and ascorbic acid radicals |
- | in-vitro, | NA, | NA |
514- | MF,  |   | Therapeutic electromagnetic field effects on angiogenesis and tumor growth |
- | in-vivo, | NA, | NA |
513- | MF,  |   | Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells |
- | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MDA-MB-468 | - | in-vitro, | BC, | MCF-7 | - | in-vivo, | Pca, | HeLa |
497- | MF,  |   | In Vitro and in Vivo Study of the Effect of Osteogenic Pulsed Electromagnetic Fields on Breast and Lung Cancer Cells |
- | vitro+vivo, | NA, | MCF-7 | - | vitro+vivo, | NA, | A549 |
496- | MF,  |   | Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells |
- | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | ZR-75-1 | - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | MDA-MB-231 |
495- | MF,  |   | How a High-Gradient Magnetic Field Could Affect Cell Life |
- | in-vitro, | NA, | HeLa |
494- | MF,  |   | Effects of Various Densities of 50 Hz Electromagnetic Field on Serum IL-9, IL-10, and TNF-α Levels |
- | in-vivo, | NA, | NA |
493- | MF,  |   | Extremely low-frequency electromagnetic field induces acetylation of heat shock proteins and enhances protein folding |
- | in-vitro, | NA, | HEK293 | - | in-vitro, | Liver, | AML12 |
492- | MF,  |   | Weak electromagnetic fields (50 Hz) elicit a stress response in human cells |
- | in-vitro, | AML, | HL-60 |
491- | MF,  |   | Pre-exposure of neuroblastoma cell line to pulsed electromagnetic field prevents H2 O2 -induced ROS production by increasing MnSOD activity |
- | in-vitro, | neuroblastoma, | SH-SY5Y |
490- | MF,  |   | Extremely Low Frequency Magnetic Field (ELF-MF) Exposure Sensitizes SH-SY5Y Cells to the Pro-Parkinson's Disease Toxin MPP(.) |
- | in-vitro, | Park, | SH-SY5Y |
489- | MF,  |   | Time-varying magnetic fields of 60 Hz at 7 mT induce DNA double-strand breaks and activate DNA damage checkpoints without apoptosis |
- | in-vitro, | NA, | HeLa | - | in-vitro, | NA, | IMR90 |
488- | MF,  |   | Repetitive exposure to a 60-Hz time-varying magnetic field induces DNA double-strand breaks and apoptosis in human cells |
- | in-vitro, | NA, | HeLa | - | in-vitro, | NA, | IMR90 |
487- | MF,  |   | Extremely Low-Frequency Electromagnetic Fields Cause G1 Phase Arrest through the Activation of the ATM-Chk2-p21 Pathway |
- | in-vitro, | NMSC, | HaCaT |
486- | MF,  |   | mTOR Activation by PI3K/Akt and ERK Signaling in Short ELF-EMF Exposed Human Keratinocytes |
- | in-vitro, | Nor, | HaCaT |
197- | MF,  |   | A mechanism for action of oscillating electric fields on cells |
196- | MF,  |   | Mechanism for action of electromagnetic fields on cells |
194- | MF,  |   | Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke |
- | Review, | Stroke, | NA |
517- | MF,  | Rad,  |   | Therapeutic Electromagnetic Field (TEMF) and gamma irradiation on human breast cancer xenograft growth, angiogenesis and metastasis |
- | in-vivo, | NA, | MDA-MB-231 |
587- | MF,  | VitC,  |   | Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean |
585- | MF,  | VitC,  |   | Impact of pulsed magnetic field treatment on enzymatic inactivation and quality of cloudy apple juice |
582- | MF,  | immuno,  | VitC,  |   | Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy |
- | in-vitro, | Pca, | TRAMP-C1 | - | in-vivo, | NA, | NA |
539- | MF,  |   | Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers |
- | in-vitro, | NA, | NA |
538- | MF,  |   | The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift |
- | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Melanoma, | MSTO-211H |
537- | MF,  | immuno,  |   | Integrating electromagnetic cancer stress with immunotherapy: a therapeutic paradigm |
- | Review, | Var, | NA |
536- | MF,  |   | Comparison of pulsed and continuous electromagnetic field generated by WPT system on human dermal and neural cells |
- | in-vitro, | Nor, | SH-SY5Y | - | in-vitro, | GBM, | T98G | - | in-vitro, | Nor, | HDFa |
535- | MF,  |   | Electromagnetic Fields Trigger Cell Death in Glioblastoma Cells through Increasing miR-126-5p and Intracellular Ca2+ Levels |
- | in-vitro, | Pca, | PC3 | - | in-vitro, | GBM, | A172 | - | in-vitro, | Pca, | HeLa |
534- | MF,  |   | Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancer |
- | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | Nor, | MCF10 |
533- | MF,  |   | Effects of extremely low-frequency magnetic fields on human MDA-MB-231 breast cancer cells: proteomic characterization |
- | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | MCF10 |
532- | MF,  |   | A 50 Hz magnetic field influences the viability of breast cancer cells 96 h after exposure |
- | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF10 |
531- | MF,  |   | 6-mT 0-120-Hz magnetic fields differentially affect cellular ATP levels |
- | in-vitro, | Cerv, | HeLa | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | RPE-1 | - | in-vitro, | Nor, | GP-293 |
530- | MF,  |   | Low frequency sinusoidal electromagnetic fields promote the osteogenic differentiation of rat bone marrow mesenchymal stem cells by modulating miR-34b-5p/STAC2 |
- | in-vivo, | Nor, | NA |
520- | MF,  |   | Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3β signaling pathway |
- | in-vitro, | Nor, | NA |
515- | MF,  |   | Pulsed Low-Frequency Magnetic Fields Induce Tumor Membrane Disruption and Altered Cell Viability |
- | in-vitro, | Lung, | A549 |
518- | MF,  |   | Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation |
- | in-vitro, | NA, | HCT116 |
519- | MF,  |   | Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells |
- | in-vitro, | AML, | K562 |
529- | MF,  |   | Low-frequency magnetic field therapy for glioblastoma: Current advances, mechanisms, challenges and future perspectives |
- | Review, | GBM, | NA |
521- | MF,  |   | Magnetic field effects in biology from the perspective of the radical pair mechanism |
- | Analysis, | NA, | NA |
522- | MF,  |   | Low Magnetic Field Exposure Alters Prostate Cancer Cell Properties |
- | in-vitro, | Pca, | PC3 |
- | in-vitro, | AML, | THP1 | - | in-vitro, | NA, | PC12 | - | in-vivo, | Cerv, | HeLa |
524- | MF,  |   | Inhibition of Angiogenesis Mediated by Extremely Low-Frequency Magnetic Fields (ELF-MFs) |
- | vitro+vivo, | PC, | MS-1 | - | vitro+vivo, | PC, | HUVECs |
525- | MF,  |   | Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis |
- | in-vitro, | Nor, | HUVECs |
526- | MF,  |   | Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels |
- | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Pca, | HeLa | - | vitro+vivo, | Melanoma, | B16-BL6 | - | in-vitro, | Nor, | HEK293 |
527- | MF,  |   | Effects of Fifty-Hertz Electromagnetic Fields on Granulocytic Differentiation of ATRA-Treated Acute Promyelocytic Leukemia NB4 Cells |
- | in-vitro, | AML, | APL NB4 |
528- | MF,  | Caff,  |   | Pulsed electromagnetic fields affect the intracellular calcium concentrations in human astrocytoma cells |
- | in-vitro, | GBM, | U373MG |
656- | MNPs,  | MF,  |   | Effects of combined delivery of extremely low frequency electromagnetic field and magnetic Fe3O4 nanoparticles on hepatic cell lines |
- | in-vitro, | HCC, | HepG2 | - | in-vitro, | Nor, | HL7702 |
- | in-vitro, | BC, | MCF-7 |
- | in-vitro, | Laryn, | HEp2 |
- | in-vitro, | BC, | MCF-7 | - | in-vitro, | Bladder, | HTB-22 |
593- | VitC,  | MF,  |   | Protective Effect of Ascorbic Acid on Molecular Behavior Changes of Hemoglobin Induced by Magnetic Field Induced by Magnetic Field |
588- | VitC,  | MF,  |   | Preparation of magnetic nanoparticle integrated nanostructured lipid carriers for controlled delivery of ascorbyl palmitate |
580- | VitC,  | MF,  |   | Extremely low frequency magnetic field induces oxidative stress in mouse cerebellum |
- | in-vivo, | Nor, | NA |
579- | VitC,  | MF,  |   | Effect of Magnetic Field on Ascorbic Acid Oxidase Activity, I |
- | in-vitro, | NA, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:172 Target#:% State#:% Dir#:%
wNotes=on sortOrder:rid,rpid