condition found tbRes List
SIL, Silymarin (Milk Thistle) silibinin: Click to Expand ⟱
Features:
Silymarin (Milk Thistle) Flowering herb related to daisy and ragweed family.
Silibinin (INN), also known as silybin is the major active constituent of silymarin, a standardized extract of the milk thistle seeds.
-a flavonoid combination of 65–80% of seven flavolignans; the most important of these include silybin, isosilybin, silychristin, isosilychristin, and silydianin. Silybin is the most abundant compound in around 50–70% in isoforms silybin A and silybin B

-Note half-life 6hrs?.
BioAv not soluble in water, low bioA (1%). 240mg yielded only 0.34ug/ml plasma level. oral administration of SM (equivalent to 120 mg silibinin), total (unconjugated + conjugated) silibinin concentration in plasma was 1.1–1.3 μg/mL, so can on acheive levels used in most in-vitro studies.
Pathways:
- results for both inducing and reducing ROS in cancer cells. In normal cell seems to consistently lower ROS. Given low bioavailability seems unlikely one could acheieve levels in vivo to raise ROS(except level in GUT could be much higher (800uM).
- ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, β-catenin↓, Notch2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


ChemoSen, chemo-sensitization: Click to Expand ⟱
Source:
Type:
The effectiveness of chemotherapy by increasing cancer cell sensitivity to the drugs used to treat them, which is known as “chemo-sensitization”.

Chemo-Sensitizers:
-Curcumin
-Resveratrol
-EGCG
-Quercetin
-Genistein
-Berberine
-Piperine: alkaloid from black pepper
-Ginsenosides: active components of ginseng
-Silymarin
-Allicin
-Lycopene
-Ellagic acid
-caffeic acid phenethyl ester
-flavopiridol
-oleandrin
-ursolic acid
-butein
-betulinic acid



Scientific Papers found: Click to Expand⟱
3326- SIL,    Silymarin suppresses proliferation of human hepatocellular carcinoma cells under hypoxia through downregulation of the HIF-1α/VEGF pathway
- in-vitro, Liver, HepG2 - in-vitro, Liver, Hep3B
*hepatoP↑, Silymarin (SM) had been used as a traditional liver protective drug for decades
chemoP↑, SM has chemopreventive and chemosensitizing effects on multiple cancers.
ChemoSen↑,
TumCP↓, SM reduced cellular proliferation, migration, invasion, and colony formation, but induced apoptosis in HepG2 and Hep3B cells under hypoxia conditions.
TumCMig↓,
TumCI↓,
Hif1a↓, The inhibitory effect of SM on HepG2 and Hep3B cells under hypoxia is partially via downregulating HIF-1α/VEGF signaling
VEGF↓,
angioG↓,

1316- SIL,  Chemo,    Silymarin and Cancer: A Dual Strategy in Both in Chemoprevention and Chemosensitivity
- Analysis, Var, NA
TumCCA↑, limiting the progression of cancer cells through different phases of the cycle—thus forcing them to evolve towards a process of cell death
p42↓,
P450↓,
OATPs↓, silibinin has been shown to inhibit OATP1B1, OATP1B3 and OATP2B1
chemoP↑,
ChemoSen↑,

3300- SIL,    Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy
- Review, Var, NA
*ROS↓, silymarin and silibinin protect the liver from oxidative stress and sustained inflammatory processes, mainly driven by Reactive Oxygen Species (ROS) and secondary cytokines
*SOD↑, Silymarin administered to patients with chronic alcoholic liver disease significantly enhanced the low SOD activity measured in the patients’ erythrocytes and lymphocytes.
*hepatoP↑,
*AST↓, Wistar albino rats 50 mg/kg oral silymarin ↓ AST, ALT; ↓MDA (lipid peroxidation); ↑SOD, GSH, CAT; ↑GST and GR
*ALAT↓,
*lipid-P↓,
*GSH↑,
*Catalase↑,
*GSTs↑,
*GSR↑,
*TNF-α↓, ↓hepatic TNF, IFN-γ, IL-4, IL-2; ↓hepatic NF-kB activation; ↑hepatic IL-10
*IFN-γ↓,
*IL4↓,
*IL2↓,
*NF-kB↓,
*IL10↑,
*Inflam↓, Anti-Inflammatory
COX2↓, NSCLC ↓ NF-kB activation; ↓COX-2; ↑apoptosis; ↑doxorubicin efficacy
Apoptosis↑,
ChemoSen↑,
PGE2↓, ↓prostaglandin E 2
VEGF↓, ↓VEGF


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
angioG↓,1,   Apoptosis↑,1,   chemoP↑,2,   ChemoSen↑,3,   COX2↓,1,   Hif1a↓,1,   OATPs↓,1,   p42↓,1,   P450↓,1,   PGE2↓,1,   TumCCA↑,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,1,   VEGF↓,2,  
Total Targets: 15

Results for Effect on Normal Cells:
ALAT↓,1,   AST↓,1,   Catalase↑,1,   GSH↑,1,   GSR↑,1,   GSTs↑,1,   hepatoP↑,2,   IFN-γ↓,1,   IL10↑,1,   IL2↓,1,   IL4↓,1,   Inflam↓,1,   lipid-P↓,1,   NF-kB↓,1,   ROS↓,1,   SOD↑,1,   TNF-α↓,1,  
Total Targets: 17

Scientific Paper Hit Count for: ChemoSen, chemo-sensitization
3 Silymarin (Milk Thistle) silibinin
1 Chemotherapy
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:154  Target#:1106  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page