condition found
Features: |
Silymarin (Milk Thistle) Flowering herb related to daisy and ragweed family. Silibinin (INN), also known as silybin is the major active constituent of silymarin, a standardized extract of the milk thistle seeds. -a flavonoid combination of 65–80% of seven flavolignans; the most important of these include silybin, isosilybin, silychristin, isosilychristin, and silydianin. Silybin is the most abundant compound in around 50–70% in isoforms silybin A and silybin B -Note half-life 6hrs?. BioAv not soluble in water, low bioA (1%). 240mg yielded only 0.34ug/ml plasma level. oral administration of SM (equivalent to 120 mg silibinin), total (unconjugated + conjugated) silibinin concentration in plasma was 1.1–1.3 μg/mL, so can on acheive levels used in most in-vitro studies. Pathways: - results for both inducing and reducing ROS in cancer cells. In normal cell seems to consistently lower ROS. Given low bioavailability seems unlikely one could acheieve levels in vivo to raise ROS(except level in GUT could be much higher (800uM). - ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, P53↑, HSP↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, - inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, β-catenin↓, Notch2↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: TCGA |
Type: Proapototic |
TP53 is the most commonly mutated gene in human cancer. TP53 is a gene that encodes for the p53 tumor suppressor protein ; TP73 (Chr.1p36.33) and TP63 (Chr.3q28) genes that encode transcription factors p73 and p63, respectively, are TP53 homologous structures. p53 is a crucial tumor suppressor protein that plays a significant role in regulating the cell cycle, maintaining genomic stability, and preventing tumor formation. It is often referred to as the "guardian of the genome" due to its role in protecting cells from DNA damage and stress. TP53 gene, which encodes the p53 protein, is one of the most frequently mutated genes in human cancers. Overexpression of MDM2, an inhibitor of p53, can lead to decreased p53 activity even in the presence of wild-type p53. In some cancers, particularly those with mutant p53, there may be an overexpression of the p53 protein. Cancers with overexpression: Breast, lung, colorectal, overian, head and neck, Esophageal, bladder, pancreatic, and liver. |
978- | SIL,  |   | A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatment |
- | Review, | NA, | NA |
2410- | SIL,  |   | Autophagy activated by silibinin contributes to glioma cell death via induction of oxidative stress-mediated BNIP3-dependent nuclear translocation of AIF |
- | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | U251 | - | in-vivo, | NA, | NA |
3288- | SIL,  |   | Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations |
- | Review, | Var, | NA |
3290- | SIL,  |   | A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents |
- | Analysis, | Var, | NA |
3296- | SIL,  |   | Silibinin induces oral cancer cell apoptosis and reactive oxygen species generation by activating the JNK/c-Jun pathway |
- | in-vitro, | Oral, | Ca9-22 | - | in-vivo, | Oral, | YD10B |
3301- | SIL,  |   | Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid |
- | Review, | Var, | NA |
399- | SNP,  | SIL,  |   | Cytotoxic potentials of silibinin assisted silver nanoparticles on human colorectal HT-29 cancer cells |
- | in-vitro, | CRC, | HT-29 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:154 Target#:236 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid