condition found
Features: |
Silymarin (Milk Thistle) Flowering herb related to daisy and ragweed family. Silibinin (INN), also known as silybin is the major active constituent of silymarin, a standardized extract of the milk thistle seeds. -a flavonoid combination of 65–80% of seven flavolignans; the most important of these include silybin, isosilybin, silychristin, isosilychristin, and silydianin. Silybin is the most abundant compound in around 50–70% in isoforms silybin A and silybin B -Note half-life 6hrs?. BioAv not soluble in water, low bioA (1%). 240mg yielded only 0.34ug/ml plasma level. oral administration of SM (equivalent to 120 mg silibinin), total (unconjugated + conjugated) silibinin concentration in plasma was 1.1–1.3 μg/mL, so can on acheive levels used in most in-vitro studies. Pathways: - results for both inducing and reducing ROS in cancer cells. In normal cell seems to consistently lower ROS. Given low bioavailability seems unlikely one could acheieve levels in vivo to raise ROS(except level in GUT could be much higher (800uM). - ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓">NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, P53↑, HSP↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, - inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, β-catenin↓, Notch2↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: HalifaxProj(inhibit) |
Type: |
NF-kB signaling Nuclear factor kappa B (NF-κB) is a transcription factor that plays a crucial role in regulating immune response, inflammation, cell proliferation, and survival. NF-κB is often found to be constitutively active in many types of cancer cells. This persistent activation can promote tumorigenesis by enhancing cell survival, proliferation, and metastasis. |
3309- | SIL,  |   | Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives |
- | Review, | NA, | NA |
3314- | SIL,  |   | Silymarin: Unveiling its pharmacological spectrum and therapeutic potential in liver diseases—A comprehensive narrative review |
- | Review, | NA, | NA |
3315- | SIL,  |   | Silymarin alleviates docetaxel-induced central and peripheral neurotoxicity by reducing oxidative stress, inflammation and apoptosis in rats |
- | in-vivo, | Nor, | NA |
3318- | SIL,  |   | Pharmaceutical prospects of Silymarin for the treatment of neurological patients: an updated insight |
- | Review, | AD, | NA | - | Review, | Park, | NA |
3319- | SIL,  |   | Silymarin and neurodegenerative diseases: Therapeutic potential and basic molecular mechanisms |
- | Review, | AD, | NA | - | Review, | Park, | NA | - | Review, | Stroke, | NA |
3320- | SIL,  |   | Neuroprotective Potential of Silymarin against CNS Disorders: Insight into the Pathways and Molecular Mechanisms of Action |
- | Review, | AD, | NA |
3323- | SIL,  |   | Anticancer therapeutic potential of silibinin: current trends, scope and relevance |
- | Review, | Var, | NA |
3324- | SIL,  |   | Silymarin prevents NLRP3 inflammasome activation and protects against intracerebral hemorrhage |
3328- | SIL,  |   | Modulatory effect of silymarin on inflammatory mediators in experimentally induced benign prostatic hyperplasia: emphasis on PTEN, HIF-1α, and NF-κB |
- | in-vivo, | BPH, | NA |
3331- | SIL,  |   | The clinical anti-inflammatory effects and underlying mechanisms of silymarin |
- | Review, | NA, | NA |
978- | SIL,  |   | A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatment |
- | Review, | NA, | NA |
3282- | SIL,  |   | Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions |
- | Review, | NA, | NA |
3289- | SIL,  |   | Silymarin: a promising modulator of apoptosis and survival signaling in cancer |
- | Review, | Var, | NA |
3290- | SIL,  |   | A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents |
- | Analysis, | Var, | NA |
3294- | SIL,  |   | Silymarin: a review on paving the way towards promising pharmacological agent |
- | Review, | Nor, | NA | - | Review, | Arthritis, | NA |
3295- | SIL,  |   | Hepatoprotective effect of silymarin |
- | Review, | NA, | NA |
3300- | SIL,  |   | Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy |
- | Review, | Var, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:154 Target#:214 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid