condition found tbRes List
SIL, Silymarin (Milk Thistle) silibinin: Click to Expand ⟱
Features:
Silymarin (Milk Thistle) Flowering herb related to daisy and ragweed family.
Silibinin (INN), also known as silybin is the major active constituent of silymarin, a standardized extract of the milk thistle seeds.
-a flavonoid combination of 65–80% of seven flavolignans; the most important of these include silybin, isosilybin, silychristin, isosilychristin, and silydianin. Silybin is the most abundant compound in around 50–70% in isoforms silybin A and silybin B

-Note half-life 6hrs?.
BioAv not soluble in water, low bioA (1%). 240mg yielded only 0.34ug/ml plasma level. oral administration of SM (equivalent to 120 mg silibinin), total (unconjugated + conjugated) silibinin concentration in plasma was 1.1–1.3 μg/mL, so can on acheive levels used in most in-vitro studies.
Pathways:
- results for both inducing and reducing ROS in cancer cells. In normal cell seems to consistently lower ROS. Given low bioavailability seems unlikely one could acheieve levels in vivo to raise ROS(except level in GUT could be much higher (800uM).
- ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, β-catenin↓, Notch2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Akt, PKB-Protein kinase B: Click to Expand ⟱
Source: HalifaxProj(inhibit)
Type:
Akt1 is involved in cellular survival pathways, by inhibiting apoptotic processes; Akt2 is an important signaling molecule in the insulin signaling pathway. It is required to induce glucose transport.

Inhibitors:
-Curcumin: downregulate AKT phosphorylation and signaling.
-Resveratrol
-Quercetin: inhibit the PI3K/AKT pathway.
-Epigallocatechin Gallate (EGCG)
-Luteolin and Apigenin: inhibit AKT phosphorylation


Scientific Papers found: Click to Expand⟱
3318- SIL,    Pharmaceutical prospects of Silymarin for the treatment of neurological patients: an updated insight
- Review, AD, NA - Review, Park, NA
*hepatoP↑, widely studied as a hepatoprotective drug for various liver disorders.
*neuroP↑, research studies have shown its putative neuroprotective nature against various brain disorders, including psychiatric, neurodegenerative, cognitive, metabolic and other neurological disorders
*TLR4↓, Silymarin treatment has shown anti-inflammatory action in AD models by suppressing toll-like receptor 4 (TLR4) pathways and decreasing the increased mRNA levels of TNF-α, IL-1β and NF-κB
*TNF-α↓,
*IL1β↓,
*NF-kB↓,
*memory↑, improvement in memory los
*cognitive↑, finally leading to normal cognitive functions
*NRF2↑, upregulating the Nrf-2/HO-1 signaling in mice model
*HO-1↑,
*ROS↓, inhibition of oxidative stress in the brain
*Akt↑, Figure 4
*mTOR↑,
*SOD↑,
*Catalase↑,
*GSH↑,
*IL10↑,
*IL6↑,
*NO↓,
*MDA↓,
*AChE↓,
*MAPK↓,

3323- SIL,    Anticancer therapeutic potential of silibinin: current trends, scope and relevance
- Review, Var, NA
Inflam↓, Silibinin has been shown to have anti-inflammatory, anti-angiogenic, antioxidant, and anti-metastatic properties
angioG↓,
antiOx↑,
TumMeta↓,
TumCP↓, silibinin helps in preventing proliferation of the tumor cells, initiating the cell cycle arrest, and induce cancer cells to die
TumCCA↑,
TumCD↑,
α-SMA↓, figure
p‑Akt↓,
p‑STAT3↓,
COX2↓,
IL6↓,
MMP2↓,
HIF-1↓,
Snail↓,
Slug↓,
Zeb1↓,
NF-kB↓,
p‑EGFR↓,
JAK2↓,
PI3K↓,
PD-L1↓,
VEGF↓,
CDK4↓,
CDK2↓,
cycD1↓,
E2Fs↓,

978- SIL,    A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatment
- Review, NA, NA
PI3K↓,
Akt↓,
NF-kB↓,
Wnt/(β-catenin)↓,
MAPK↓,
TumCP↓,
TumCCA↑, G0/G1 cell cycle arrest
Apoptosis↑, In T24 and UM-UC-3 human bladder cancer cells, silibinin treatment at a concentration of 10 μM significantly inhibited proliferation, migration, invasion, and induced apoptosis.
p‑EGFR↓,
JAK2↓,
STAT5↓,
cycD1↓,
hTERT↓,
AP-1↓,
MMP9↓,
miR-21↓,
miR-155↓,
Casp9↑,
BID↑,
ERK↓, ERK1/2
Akt2↓,
DNMT1↓,
P53↑,
survivin↓,
Casp3↑,
ROS↑, cytotoxicity of silibinin in Hep-2 cells was associated with the accumulation of intracellular reactive oxygen species (ROS), which could be mitigated by the ROS scavenger NAC.

3288- SIL,    Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations
- Review, Var, NA
Inflam↓, Silymarin, a milk thistle extract, has anti-inflammatory, immunomodulatory, anti-lipid peroxidative, anti-fibrotic, anti-oxidative, and anti-proliferative properties.
lipid-P↓,
TumMeta↓, Silymarin exhibits not only anti-cancer functions through modulating various hallmarks of cancer, including cell cycle, metastasis, angiogenesis, apoptosis, and autophagy, by targeting a plethora of molecules
angioG↓,
chemoP↑, but also plays protective roles against chemotherapy-induced toxicity, such as nephrotoxicity,
EMT↓, Figure 2, Metastasis
HDAC↓,
HATs↑,
MMPs↓,
uPA↓,
PI3K↓,
Akt↓,
VEGF↓, Angiogenesis
CD31↓,
Hif1a↓,
VEGFR2↓,
Raf↓,
MEK↓,
ERK↓,
BIM↓, apoptosis
BAX↑,
Bcl-2↓,
Bcl-xL↓,
Casp↑,
MAPK↓,
P53↑,
LC3II↑, Autophagy
mTOR↓,
YAP/TEAD↓,
*BioAv↓, Additionally, the oral bioavailability of silymarin in rats is only 0.73 %
MMP↓, silymarin treatment reduced mitochondrial transmembrane potential, leading to an increase in cytosolic cytochrome c (Cyt c), downregulating proliferation-associated proteins (PCNA, c-Myc, cyclin D1, and β-catenin)
Cyt‑c↑,
PCNA↓,
cMyc↓,
cycD1↓,
β-catenin/ZEB1↓,
survivin↓, and anti-apoptotic proteins (survivin and Bcl-2), and upregulating pro-apoptotic proteins (caspase-3, Bax, APAF-1, and p53)
APAF1↑,
Casp3↑,
MDSCs↓, ↓MDSCs, ↓IL-10, ↑IL-2 and IFN-γ
IL10↓,
IL2↑,
IFN-γ↑,
hepatoP↑, Moreover, in a randomized clinical trial, silymarin attenuated hepatoxicity in non-metastatic breast cancer patients undergoing a doxorubicin/cyclophosphamide-paclitaxel regimen
cardioP↑, For example, Rašković et al. studied the hepatoprotective and cardioprotective effects of silymarin (60 mg/kg orally) in rats following DOX
GSH↑, silymarin could protect the kidney and heart from ADR toxicity by protecting against glutathione (GSH) depletion and inhibiting lipid peroxidation
neuroP↑, silymarin attenuated the neurotoxicity of docetaxel by reducing apoptosis, inflammation, and oxidative stress

3289- SIL,    Silymarin: a promising modulator of apoptosis and survival signaling in cancer
- Review, Var, NA
*BioAv↝, silymarin’s poor bioavailability and limited thérapeutic efficacy have been overcome by encapsulation of silymarin into nanoparticles
*BioAv↓, Silymarin is barely 20–50% absorbed by the GIT cells and has an absolute oral bioavailability of 0.95%
Fas↑, silibinin, enhances the Fas pathway in most cancers cells by upregulating the Fas and Fas L
FasL↑,
FADD↑, silymarin triggered apoptosis via upregulating the expression of FADD (Fig. 2b), a downstream component of the death receptor pathway, subsequently leading to the cleavage of procaspase 8 and initiation of apoptotic cell death
pro‑Casp8↑,
Apoptosis↑,
DR5↑, silymarin promotes apoptosis through the death receptor-mediated pathway, contributing to its anticancer effects
Bcl-2↑, Bcl-2, an anti-apoptotic protein, was decreased
BAX↑, Bax is also upregulated and leads to the activation of caspase-3.
Casp3↑,
PI3K↓, Silibinin inhibits the PI3K activity, leading to the reduction of FoxM1 (Forkhead box M1) and the subsequent activation of the mitochondrial apoptotic pathway
Foxm1↓,
p‑mTOR↓, inhibiting phosphorylation of several key components in this pathway, such as mTOR, p70S6K and 4E-BP1
p‑P70S6K↓,
Hif1a↓, mTOR pathway signaling in turn may result in low levels of HIF-1α due to the unfavorable conditions of hypoxia.
Akt↑, silibinin activates the Akt pathway in cervical cancer cells. This activation of Akt could have some bearing on the overall antitumor activity of silibinin in cervical cancer cells.
angioG↓, silibinin inhibited STAT3, HIF-1α, and NF-κB, thereby reducing the population of lung macrophages and limiting angiogenesis
STAT3↓,
NF-kB↓,
lipid-P↓, silibinin delays the progression of endometrial carcinoma via inhibiting STAT3 activation and lowering lipid accumulation, which is regulated by SREBP1
eff↑, Sorafenib and silibinin work together to target both liver cancer cells and cancer stem cells. This combination operates by suppressing the STAT3/ERK/AKT pathways and decreasing the production of Mcl-1 and Bcl-2 proteins
CDK1↓, reducing the expression of CDK1, survivin, Bcl-xL, cyclinB1 and Mcl- 1 and simultaneously activate caspases 3 and 9
survivin↓,
CycB↓,
Mcl-1↓,
Casp9↑,
AP-1↓, hindered the activation of transcription factors NF-κB and AP-1
BioAv↑, Liang et al., created a chitosan-based lipid polymer hybrid nanoparticles that boosted the bioavailability of silymarin by 14.38-fold


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
Akt↓,2,   Akt↑,1,   p‑Akt↓,1,   Akt2↓,1,   angioG↓,3,   antiOx↑,1,   AP-1↓,2,   APAF1↑,1,   Apoptosis↑,2,   BAX↑,2,   Bcl-2↓,1,   Bcl-2↑,1,   Bcl-xL↓,1,   BID↑,1,   BIM↓,1,   BioAv↑,1,   cardioP↑,1,   Casp↑,1,   Casp3↑,3,   pro‑Casp8↑,1,   Casp9↑,2,   CD31↓,1,   CDK1↓,1,   CDK2↓,1,   CDK4↓,1,   chemoP↑,1,   cMyc↓,1,   COX2↓,1,   CycB↓,1,   cycD1↓,3,   Cyt‑c↑,1,   DNMT1↓,1,   DR5↑,1,   E2Fs↓,1,   eff↑,1,   p‑EGFR↓,2,   EMT↓,1,   ERK↓,2,   FADD↑,1,   Fas↑,1,   FasL↑,1,   Foxm1↓,1,   GSH↑,1,   HATs↑,1,   HDAC↓,1,   hepatoP↑,1,   HIF-1↓,1,   Hif1a↓,2,   hTERT↓,1,   IFN-γ↑,1,   IL10↓,1,   IL2↑,1,   IL6↓,1,   Inflam↓,2,   JAK2↓,2,   LC3II↑,1,   lipid-P↓,2,   MAPK↓,2,   Mcl-1↓,1,   MDSCs↓,1,   MEK↓,1,   miR-155↓,1,   miR-21↓,1,   MMP↓,1,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   mTOR↓,1,   p‑mTOR↓,1,   neuroP↑,1,   NF-kB↓,3,   P53↑,2,   p‑P70S6K↓,1,   PCNA↓,1,   PD-L1↓,1,   PI3K↓,4,   Raf↓,1,   ROS↑,1,   Slug↓,1,   Snail↓,1,   STAT3↓,1,   p‑STAT3↓,1,   STAT5↓,1,   survivin↓,3,   TumCCA↑,2,   TumCD↑,1,   TumCP↓,2,   TumMeta↓,2,   uPA↓,1,   VEGF↓,2,   VEGFR2↓,1,   Wnt/(β-catenin)↓,1,   YAP/TEAD↓,1,   Zeb1↓,1,   α-SMA↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 96

Results for Effect on Normal Cells:
AChE↓,1,   Akt↑,1,   BioAv↓,2,   BioAv↝,1,   Catalase↑,1,   cognitive↑,1,   GSH↑,1,   hepatoP↑,1,   HO-1↑,1,   IL10↑,1,   IL1β↓,1,   IL6↑,1,   MAPK↓,1,   MDA↓,1,   memory↑,1,   mTOR↑,1,   neuroP↑,1,   NF-kB↓,1,   NO↓,1,   NRF2↑,1,   ROS↓,1,   SOD↑,1,   TLR4↓,1,   TNF-α↓,1,  
Total Targets: 24

Scientific Paper Hit Count for: Akt, PKB-Protein kinase B
5 Silymarin (Milk Thistle) silibinin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:154  Target#:4  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page