Features: |
Silymarin (Milk Thistle) Flowering herb related to daisy and ragweed family. Silibinin (INN), also known as silybin is the major active constituent of silymarin, a standardized extract of the milk thistle seeds. -a flavonoid combination of 65–80% of seven flavolignans; the most important of these include silybin, isosilybin, silychristin, isosilychristin, and silydianin. Silybin is the most abundant compound in around 50–70% in isoforms silybin A and silybin B -Note half-life 6hrs?. BioAv not soluble in water, low bioA (1%). 240mg yielded only 0.34ug/ml plasma level. oral administration of SM (equivalent to 120 mg silibinin), total (unconjugated + conjugated) silibinin concentration in plasma was 1.1–1.3 μg/mL, so can on acheive levels used in most in-vitro studies. Pathways: - results for both inducing and reducing ROS in cancer cells. In normal cell seems to consistently lower ROS. Given low bioavailability seems unlikely one could acheieve levels in vivo to raise ROS(except level in GUT could be much higher (800uM). - ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, P53↑, HSP↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, - inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, β-catenin↓, Notch2↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: HalifaxProj(inhibit) |
Type: |
Akt1 is involved in cellular survival pathways, by inhibiting apoptotic processes; Akt2 is an important signaling molecule in the insulin signaling pathway. It is required to induce glucose transport. Inhibitors: -Curcumin: downregulate AKT phosphorylation and signaling. -Resveratrol -Quercetin: inhibit the PI3K/AKT pathway. -Epigallocatechin Gallate (EGCG) -Luteolin and Apigenin: inhibit AKT phosphorylation |
3323- | SIL, | Anticancer therapeutic potential of silibinin: current trends, scope and relevance |
- | Review, | Var, | NA |
3318- | SIL, | Pharmaceutical prospects of Silymarin for the treatment of neurological patients: an updated insight |
- | Review, | AD, | NA | - | Review, | Park, | NA |
4203- | SIL, | Unlocking the Neuroprotective Potential of Silymarin: A Promising Ally in Safeguarding the Brain from Alzheimer’s Disease and Other Neurological Disorders |
- | Review, | NA, | NA |
3646- | SIL, | "Silymarin", a promising pharmacological agent for treatment of diseases |
- | Review, | NA, | NA |
3289- | SIL, | Silymarin: a promising modulator of apoptosis and survival signaling in cancer |
- | Review, | Var, | NA |
3288- | SIL, | Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations |
- | Review, | Var, | NA |
978- | SIL, | A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatment |
- | Review, | NA, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:154 Target#:4 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid