condition found tbRes List
SIL, Silymarin (Milk Thistle) silibinin: Click to Expand ⟱
Features:
Silymarin (Milk Thistle) Flowering herb related to daisy and ragweed family.
Silibinin (INN), also known as silybin is the major active constituent of silymarin, a standardized extract of the milk thistle seeds.
-a flavonoid combination of 65–80% of seven flavolignans; the most important of these include silybin, isosilybin, silychristin, isosilychristin, and silydianin. Silybin is the most abundant compound in around 50–70% in isoforms silybin A and silybin B

-Note half-life 6hrs?.
BioAv not soluble in water, low bioA (1%). 240mg yielded only 0.34ug/ml plasma level. oral administration of SM (equivalent to 120 mg silibinin), total (unconjugated + conjugated) silibinin concentration in plasma was 1.1–1.3 μg/mL, so can on acheive levels used in most in-vitro studies.
Pathways:
- results for both inducing and reducing ROS in cancer cells. In normal cell seems to consistently lower ROS. Given low bioavailability seems unlikely one could acheieve levels in vivo to raise ROS(except level in GUT could be much higher (800uM).
- ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF, HIF-1α↓, Notch↓, PDGF↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, β-catenin↓, Notch2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


VEGF, Vascular endothelial growth factor: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
A signal protein produced by many cells that stimulates the formation of blood vessels. Vascular endothelial growth factor (VEGF) is a signal protein that plays a crucial role in angiogenesis, the process by which new blood vessels form from existing ones. This process is vital for normal physiological functions, such as wound healing and the menstrual cycle, but it is also a key factor in the growth and spread of tumors in cancer.
Because of its significant role in tumor growth and progression, VEGF has become a target for cancer therapies. Anti-VEGF therapies, such as monoclonal antibodies (e.g., bevacizumab) and small molecule inhibitors, aim to inhibit the action of VEGF, thereby reducing blood supply to tumors and limiting their growth. These therapies have been used in various types of cancer, including colorectal, lung, and breast cancer.


Scientific Papers found: Click to Expand⟱
3314- SIL,    Silymarin: Unveiling its pharmacological spectrum and therapeutic potential in liver diseases—A comprehensive narrative review
- Review, NA, NA
*antiOx↑, silymarin, demonstrating remarkable antioxidant and hepatoprotective properties in extensive preclinical investigations.
*hepatoP↑, It can protect healthy liver cells or those that have not yet sustained permanent damage by reducing oxidative stress and mitigating cytotoxicity.
*Half-Life↑, The main ingredient in silymarin, silibinin, normally takes two to four hours to reach its peak plasma concentration after oral consumption, and it has a 6‐hour plasma half‐life
*ROS↓, silibinin has potent anti‐ROS qualities,
*GSH↑, silymarin, the precursor to silibinin, can increase glutathione production in the liver and hence increase the liver tissues' antioxidant capacity
*hepatoP↑, silymarin, the precursor to silibinin, can increase glutathione production in the liver and hence increase the liver tissues' antioxidant capacity
*lipid-P↓,
*TNF-α↓, inhibit the production of pro‐inflammatory cytokines, such as TNF‐α, IFN‐γ, IL‐2, and IL‐4, which are crucial in the inflammatory cascade
*IFN-γ↓,
*IL2↓,
*IL4↓,
*NF-kB↓, Silymarin's mechanism involves suppressing NF‐κB activation,
*iNOS↓, It downregulates inflammatory mediators like interleukins, TNF‐α, and iNOS, which are involved in various diseases.
*OATPs↓, Its inhibition of transporters, including OATPs and OCTs, may also affect members of the solute carrier family
*OCT4↓,
*Inflam↓, Silymarin may have anti‐inflammatory properties that limit the production of inflammatory mediators like NF‐B and inflammatory metabolites like prostaglandin E2 (PGE2)
*PGE2↓,
MMPs↓, Silymarin significantly inhibits matrix metalloproteinases (MMPs), essential for cancer metastasis,
VEGF↓, Additionally, silymarin down‐regulates VEGF expression, contributing to anti‐angiogenic effects, and has the potential to reverse STAT‐3‐associated cancer drug resistance.
angioG↓,
STAT3↓,
*ALAT↓, The research revealed improved liver function as seen by lower levels of ALT, AST, and alkaline phosphatase, as well as a considerably lower likelihood of developing DILI four weeks after starting silymarin treatment
*AST↓,
Dose↝, The suggested dosage of silymarin has been used in clinical trials for up to 48 weeks at a dose of 2100 mg/day and for up to 4 years at a dose of up to 420 mg/day.

3323- SIL,    Anticancer therapeutic potential of silibinin: current trends, scope and relevance
- Review, Var, NA
Inflam↓, Silibinin has been shown to have anti-inflammatory, anti-angiogenic, antioxidant, and anti-metastatic properties
angioG↓,
antiOx↑,
TumMeta↓,
TumCP↓, silibinin helps in preventing proliferation of the tumor cells, initiating the cell cycle arrest, and induce cancer cells to die
TumCCA↑,
TumCD↑,
α-SMA↓, figure
p‑Akt↓,
p‑STAT3↓,
COX2↓,
IL6↓,
MMP2↓,
HIF-1↓,
Snail↓,
Slug↓,
Zeb1↓,
NF-kB↓,
p‑EGFR↓,
JAK2↓,
PI3K↓,
PD-L1↓,
VEGF↓,
CDK4↓,
CDK2↓,
cycD1↓,
E2Fs↓,

3326- SIL,    Silymarin suppresses proliferation of human hepatocellular carcinoma cells under hypoxia through downregulation of the HIF-1α/VEGF pathway
- in-vitro, Liver, HepG2 - in-vitro, Liver, Hep3B
*hepatoP↑, Silymarin (SM) had been used as a traditional liver protective drug for decades
chemoP↑, SM has chemopreventive and chemosensitizing effects on multiple cancers.
ChemoSen↑,
TumCP↓, SM reduced cellular proliferation, migration, invasion, and colony formation, but induced apoptosis in HepG2 and Hep3B cells under hypoxia conditions.
TumCMig↓,
TumCI↓,
Hif1a↓, The inhibitory effect of SM on HepG2 and Hep3B cells under hypoxia is partially via downregulating HIF-1α/VEGF signaling
VEGF↓,
angioG↓,

3282- SIL,    Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions
- Review, NA, NA
hepatoP↑, This group of flavonoids has been extensively studied and they have been used as hepato-protective substances
AntiCan↑, however, silymarin compounds have clear anticancer effects
TumCMig↓, decreasing migration through multiple targeting, decreasing hypoxia inducible factor-1α expression, i
Hif1a↓, In prostate cancer cells silibinin inhibited HIF-1α translation
selectivity↑, antitumoral activity of silymarin compounds is limited to malignant cells while the nonmalignant cells seem not to be affected
toxicity∅, long history of silymarin use in human diseases without toxicity after prolonged administration.
*antiOx↑, as an antioxidant, by scavenging prooxidant free radicals
*Inflam↓,
*NA↓, antiinflammatory effects similar to those of indomethacin,
TumCCA↑, MDA-MB 486 breast cancer cells, G1 arrest was found due to increased p21 and decreased CDKs activity
P21↑,
CDK4↓,
NF-kB↓, human prostate carcinoma cells, silymarin decreased ligand binding to Erb1 135 and NF-kB expression was strongly inhibited by silymarin in hepatoma cell
ERK↓, human prostate carcinoma cells, silymarin decreased ligand binding to Erb1 135 and NF-kB expression was strongly inhibited by silymarin in hepatoma cell
PSA↓, Treating prostate carcinoma cells with silymarin the levels of PSA were significantly decreased and cell growth was inhibited through decreased CDK activity and induction of Cip1/p21 and Kip1/p27. 1
TumCG↓,
p27↑,
COX2↓, such as anti-COX2 and anti-IL-1α activity, 140 antiangiogenic effects through inhibition of VEGF secretion, upregulation of Insulin like Growth Factor Binding Protein 3 (IGFBP3), 141 and inhibition of androgen receptors.
IL1↓,
VEGF↓,
IGFBP3↑,
AR↓,
STAT3↓, downregulation of the STAT3 pathway which was seen in many cell models.
Telomerase↓, silymarin has the ability to decrease telomerase activity in prostate cancer cells
Cyt‑c↑, mitochondrial cytochrome C release-caspase activation.
Casp↑,
eff↝, Malignant p53 negative cells show only minimal apoptosis when treated with silymarin. Therefore, one conclusion is that silymarin may be useful in tumors with conserved p53.
HDAC↓, inhibit histone deacetylase activity;
HATs↑, increase histone acetyltransferase activity
Zeb1↓, reduce expression of the transcription factor ZEB1
E-cadherin↑, increase expression of E-cadherin;
miR-203↑, increase expression of miR-203
NHE1↓, reduce activation of sodium hydrogen isoform 1 exchanger (NHE1)
MMP2↓, target β catenin and reduce the levels of MMP2 and MMP9
MMP9↓,
PGE2↓, reduce activation of prostaglandin E2
Vim↓, suppress vimentin expression
Wnt↓, inhibit Wnt signaling
angioG↓, Silymarin inhibits angiogenesis.
VEGF↓, VEGF downregulation
*TIMP1↓, Silymarin has the capacity to decrease TIMP1 expression166–168 in mice.
EMT↓, found that silibinin had no effect on EMT. However, the opposite was found in other malignant tissues160–162 where it showed inhibitory effects.
TGF-β↓, Silibinin reduces the expression of TGF β2 in different tumors such as triple negative breast, 174 prostate, and colorectal cancers.
CD44↓, Silibinin decreased CD44 expression and the activation of EGFR (epidermal growth factor receptor)
EGFR↓,
PDGF↓, silibinin had the ability to downregulate PDFG in fibroblasts, thus decreasing proliferation.
*IL8↓, Flavonoids, in general, reduce levels of IL-8. Curcumin, 200 apigenin, 201 and silybin showed the ability to decrease IL-8 levels
SREBP1↓, Silymarin inhibited STAT3 phosphorylation and decreased the expression of intranuclear sterol regulatory element binding protein 1 (SREBP1), decreasing lipid synthesis.
MMP↓, reduced membrane potential and ATP content
ATP↓,
uPA↓, silibinin decreased MMP2, MMP9, and urokinase plasminogen activator receptor level (uPAR) in neuroblastoma cells. uPAR is also a marker of cell invasion.
PD-L1↓, Silibinin inhibits PD-L1 by impeding STAT5 binding in NSCLC.
NOTCH↓, Silybin inhibited Notch signaling in hepatocellular carcinoma cells showing antitumoral effects
*SIRT1↑, Silymarin can also increase SIRT1 expression in other tissues, such as hippocampus, 221 articular chondrocytes, 222 and heart muscle
SIRT1↓, Silymarin seems to act differently in tumors: in lung cancer cells SIRT downregulated SIRT1 and exerted multiple antitumor effects such as reduced adhesion and migration and increased apoptosis.
CA↓, Silymarin has the ability to inhibit CA isoforms CA I and CA II.
Ca+2↑, ilymarin increases mitochondrial release of Ca++ and lowers mitochondrial membrane potential in cancer cell
chemoP↑, Silymarin: Decreasing Side Effects and Toxicity of Chemotherapeutic Drugs
cardioP↑, There is also evidence that it protects the heart from doxorubicin toxicity, however, it is less potent than quercetin in this effect.
Dose↝, oral administration of 240 mg of silybin to 6 healthy volunteers the following results were obtained 377 : maximum\,plasmaconcentration0.34±0.16⁢𝜇⁢g/m⁢L
Half-Life↝, and time to maximum plasma concentration 1.32 ± 0.45 h. Absorption half life 0.17 ± 0.09 h, elimination half life 6.32 ± 3.94 h
BioAv↓, silymarin is not soluble in water and oral administration shows poor absorption in the alimentary tract (approximately 1% in rats,
BioAv↓, Our conclusion is that, from a bioavailability standpoint, it is much easier to achieve migration inhibition, than proliferative reduction.
BioAv↓, Combination with succinate: is available on the market under the trade mark Legalon® (bis hemisuccinate silybin). Combination with phosphatidylcholine:
toxicity↝, 13 g daily per os divided into 3 doses was well tolerated. The most frequent adverse event was asymptomatic liver toxicity.
Half-Life↓, It may be necessary to administer 800 mg 4 times a day because the half-life is short.
ROS↓, its ability as an antioxidant reduces ROS production
FAK↓, Silibinin decreased human osteosarcoma cell invasion through Erk inhibition of a FAK/ERK/uPA/MMP2 pathway

3288- SIL,    Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations
- Review, Var, NA
Inflam↓, Silymarin, a milk thistle extract, has anti-inflammatory, immunomodulatory, anti-lipid peroxidative, anti-fibrotic, anti-oxidative, and anti-proliferative properties.
lipid-P↓,
TumMeta↓, Silymarin exhibits not only anti-cancer functions through modulating various hallmarks of cancer, including cell cycle, metastasis, angiogenesis, apoptosis, and autophagy, by targeting a plethora of molecules
angioG↓,
chemoP↑, but also plays protective roles against chemotherapy-induced toxicity, such as nephrotoxicity,
EMT↓, Figure 2, Metastasis
HDAC↓,
HATs↑,
MMPs↓,
uPA↓,
PI3K↓,
Akt↓,
VEGF↓, Angiogenesis
CD31↓,
Hif1a↓,
VEGFR2↓,
Raf↓,
MEK↓,
ERK↓,
BIM↓, apoptosis
BAX↑,
Bcl-2↓,
Bcl-xL↓,
Casp↑,
MAPK↓,
P53↑,
LC3II↑, Autophagy
mTOR↓,
YAP/TEAD↓,
*BioAv↓, Additionally, the oral bioavailability of silymarin in rats is only 0.73 %
MMP↓, silymarin treatment reduced mitochondrial transmembrane potential, leading to an increase in cytosolic cytochrome c (Cyt c), downregulating proliferation-associated proteins (PCNA, c-Myc, cyclin D1, and β-catenin)
Cyt‑c↑,
PCNA↓,
cMyc↓,
cycD1↓,
β-catenin/ZEB1↓,
survivin↓, and anti-apoptotic proteins (survivin and Bcl-2), and upregulating pro-apoptotic proteins (caspase-3, Bax, APAF-1, and p53)
APAF1↑,
Casp3↑,
MDSCs↓, ↓MDSCs, ↓IL-10, ↑IL-2 and IFN-γ
IL10↓,
IL2↑,
IFN-γ↑,
hepatoP↑, Moreover, in a randomized clinical trial, silymarin attenuated hepatoxicity in non-metastatic breast cancer patients undergoing a doxorubicin/cyclophosphamide-paclitaxel regimen
cardioP↑, For example, Rašković et al. studied the hepatoprotective and cardioprotective effects of silymarin (60 mg/kg orally) in rats following DOX
GSH↑, silymarin could protect the kidney and heart from ADR toxicity by protecting against glutathione (GSH) depletion and inhibiting lipid peroxidation
neuroP↑, silymarin attenuated the neurotoxicity of docetaxel by reducing apoptosis, inflammation, and oxidative stress

3300- SIL,    Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy
- Review, Var, NA
*ROS↓, silymarin and silibinin protect the liver from oxidative stress and sustained inflammatory processes, mainly driven by Reactive Oxygen Species (ROS) and secondary cytokines
*SOD↑, Silymarin administered to patients with chronic alcoholic liver disease significantly enhanced the low SOD activity measured in the patients’ erythrocytes and lymphocytes.
*hepatoP↑,
*AST↓, Wistar albino rats 50 mg/kg oral silymarin ↓ AST, ALT; ↓MDA (lipid peroxidation); ↑SOD, GSH, CAT; ↑GST and GR
*ALAT↓,
*lipid-P↓,
*GSH↑,
*Catalase↑,
*GSTs↑,
*GSR↑,
*TNF-α↓, ↓hepatic TNF, IFN-γ, IL-4, IL-2; ↓hepatic NF-kB activation; ↑hepatic IL-10
*IFN-γ↓,
*IL4↓,
*IL2↓,
*NF-kB↓,
*IL10↑,
*Inflam↓, Anti-Inflammatory
COX2↓, NSCLC ↓ NF-kB activation; ↓COX-2; ↑apoptosis; ↑doxorubicin efficacy
Apoptosis↑,
ChemoSen↑,
PGE2↓, ↓prostaglandin E 2
VEGF↓, VEGF

3301- SIL,    Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid
- Review, Var, NA
Inflam↓, graphical abstract
TumCCA↑,
Apoptosis↓,
TumMeta↓,
TumCG↓,
angioG↓,
chemoP↑, The chemo-protective effects of silymarin and silibinin propose that they could be applied to decrease the side effects and increase the anti-tumor effects of chemotherapy and radiotherapy in different types of cancers.
radioP↑,
p‑ERK↓, fig 2
p‑p38↓,
p‑JNK↓,
P53↑,
Bcl-2↓,
Bcl-xL↓,
TGF-β↓,
MMP2↓,
MMP9↓,
E-cadherin↑,
Wnt↓,
Vim↓,
VEGF↓,
IL6↓,
STAT3↓,
*ROS↓,
IL1β↓,
PGE2↓,
CDK1↓, Causes cell cycle arrest by down-regulating CDK1, cyclinB1, survivin, Bcl-xl, Mcl-1 and activating caspase 3 and caspase 9,
CycB↓,
survivin↓,
Mcl-1↓,
Casp3↑,
Casp9↑,
cMyc↓, Silibinin treatment diminishes c-MYC
COX2↓, Silibinin considerably down-regulated the expression of COX-2, HIF-1α, VEGF, Ang-2, Ang-4, MMP-2, MMP-9, CCR-2 and CXCR-4
Hif1a↓,
CXCR4↓,
CSCs↓, HCT-116 cells, Induction of apoptosis, suppression of migration, elimination of CSCs. Attenuation of EMT via decreased expression of N- cadherin and vimentin and increased expression of (E-cadherin).
EMT↓,
N-cadherin↓,
PCNA↓, Decrease in PCNA and cyclin D1 level.
cycD1↓,
ROS↑, Hepatocellular carcinoma: Silymarin nanoemulsion reduced the cell viability and increased ROS intensity and chromatin condensation.
eff↑, Silymarin + Curcumin
eff↑, Silibinin + Metformin
eff↑, Silibinin + 1, 25-vitamin D3
HER2/EBBR2↓, Significant down regulation of HER2 by 150 and 250 µM of silybin after 24, 48 and 72 h.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   p‑Akt↓,1,   angioG↓,6,   AntiCan↑,1,   antiOx↑,1,   APAF1↑,1,   Apoptosis↓,1,   Apoptosis↑,1,   AR↓,1,   ATP↓,1,   BAX↑,1,   Bcl-2↓,2,   Bcl-xL↓,2,   BIM↓,1,   BioAv↓,3,   CA↓,1,   Ca+2↑,1,   cardioP↑,2,   Casp↑,2,   Casp3↑,2,   Casp9↑,1,   CD31↓,1,   CD44↓,1,   CDK1↓,1,   CDK2↓,1,   CDK4↓,2,   chemoP↑,4,   ChemoSen↑,2,   cMyc↓,2,   COX2↓,4,   CSCs↓,1,   CXCR4↓,1,   CycB↓,1,   cycD1↓,3,   Cyt‑c↑,2,   Dose↝,2,   E-cadherin↑,2,   E2Fs↓,1,   eff↑,3,   eff↝,1,   EGFR↓,1,   p‑EGFR↓,1,   EMT↓,3,   ERK↓,2,   p‑ERK↓,1,   FAK↓,1,   GSH↑,1,   Half-Life↓,1,   Half-Life↝,1,   HATs↑,2,   HDAC↓,2,   hepatoP↑,2,   HER2/EBBR2↓,1,   HIF-1↓,1,   Hif1a↓,4,   IFN-γ↑,1,   IGFBP3↑,1,   IL1↓,1,   IL10↓,1,   IL1β↓,1,   IL2↑,1,   IL6↓,2,   Inflam↓,3,   JAK2↓,1,   p‑JNK↓,1,   LC3II↑,1,   lipid-P↓,1,   MAPK↓,1,   Mcl-1↓,1,   MDSCs↓,1,   MEK↓,1,   miR-203↑,1,   MMP↓,2,   MMP2↓,3,   MMP9↓,2,   MMPs↓,2,   mTOR↓,1,   N-cadherin↓,1,   neuroP↑,1,   NF-kB↓,2,   NHE1↓,1,   NOTCH↓,1,   P21↑,1,   p27↑,1,   p‑p38↓,1,   P53↑,2,   PCNA↓,2,   PD-L1↓,2,   PDGF↓,1,   PGE2↓,3,   PI3K↓,2,   PSA↓,1,   radioP↑,1,   Raf↓,1,   ROS↓,1,   ROS↑,1,   selectivity↑,1,   SIRT1↓,1,   Slug↓,1,   Snail↓,1,   SREBP1↓,1,   STAT3↓,3,   p‑STAT3↓,1,   survivin↓,2,   Telomerase↓,1,   TGF-β↓,2,   toxicity↝,1,   toxicity∅,1,   TumCCA↑,3,   TumCD↑,1,   TumCG↓,2,   TumCI↓,1,   TumCMig↓,2,   TumCP↓,2,   TumMeta↓,3,   uPA↓,2,   VEGF↓,8,   VEGFR2↓,1,   Vim↓,2,   Wnt↓,2,   YAP/TEAD↓,1,   Zeb1↓,2,   α-SMA↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 124

Results for Effect on Normal Cells:
ALAT↓,2,   antiOx↑,2,   AST↓,2,   BioAv↓,1,   Catalase↑,1,   GSH↑,2,   GSR↑,1,   GSTs↑,1,   Half-Life↑,1,   hepatoP↑,4,   IFN-γ↓,2,   IL10↑,1,   IL2↓,2,   IL4↓,2,   IL8↓,1,   Inflam↓,3,   iNOS↓,1,   lipid-P↓,2,   NA↓,1,   NF-kB↓,2,   OATPs↓,1,   OCT4↓,1,   PGE2↓,1,   ROS↓,3,   SIRT1↑,1,   SOD↑,1,   TIMP1↓,1,   TNF-α↓,2,  
Total Targets: 28

Scientific Paper Hit Count for: VEGF, Vascular endothelial growth factor
7 Silymarin (Milk Thistle) silibinin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:154  Target#:334  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page