condition found tbRes List
SIL, Silymarin (Milk Thistle) silibinin: Click to Expand ⟱
Features:
Silymarin (Milk Thistle) Flowering herb related to daisy and ragweed family.
Silibinin (INN), also known as silybin is the major active constituent of silymarin, a standardized extract of the milk thistle seeds.
-a flavonoid combination of 65–80% of seven flavolignans; the most important of these include silybin, isosilybin, silychristin, isosilychristin, and silydianin. Silybin is the most abundant compound in around 50–70% in isoforms silybin A and silybin B

-Note half-life 6hrs?.
BioAv not soluble in water, low bioA (1%). 240mg yielded only 0.34ug/ml plasma level. oral administration of SM (equivalent to 120 mg silibinin), total (unconjugated + conjugated) silibinin concentration in plasma was 1.1–1.3 μg/mL, so can on acheive levels used in most in-vitro studies.
Pathways:
- results for both inducing and reducing ROS in cancer cells. In normal cell seems to consistently lower ROS. Given low bioavailability seems unlikely one could acheieve levels in vivo to raise ROS(except level in GUT could be much higher (800uM).
- ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, β-catenin↓, Notch2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCCA, Tumor cell cycle arrest: Click to Expand ⟱
Source:
Type:
Tumor cell cycle arrest refers to the process by which cancer cells stop progressing through the cell cycle, which is the series of phases that a cell goes through to divide and replicate. This arrest can occur at various checkpoints in the cell cycle, including the G1, S, G2, and M phases. S, G1, G2, and M are the four phases of mitosis.


Scientific Papers found: Click to Expand⟱
3323- SIL,    Anticancer therapeutic potential of silibinin: current trends, scope and relevance
- Review, Var, NA
Inflam↓, Silibinin has been shown to have anti-inflammatory, anti-angiogenic, antioxidant, and anti-metastatic properties
angioG↓,
antiOx↑,
TumMeta↓,
TumCP↓, silibinin helps in preventing proliferation of the tumor cells, initiating the cell cycle arrest, and induce cancer cells to die
TumCCA↑,
TumCD↑,
α-SMA↓, figure
p‑Akt↓,
p‑STAT3↓,
COX2↓,
IL6↓,
MMP2↓,
HIF-1↓,
Snail↓,
Slug↓,
Zeb1↓,
NF-kB↓,
p‑EGFR↓,
JAK2↓,
PI3K↓,
PD-L1↓,
VEGF↓,
CDK4↓,
CDK2↓,
cycD1↓,
E2Fs↓,

978- SIL,    A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatment
- Review, NA, NA
PI3K↓,
Akt↓,
NF-kB↓,
Wnt/(β-catenin)↓,
MAPK↓,
TumCP↓,
TumCCA↑, G0/G1 cell cycle arrest
Apoptosis↑, In T24 and UM-UC-3 human bladder cancer cells, silibinin treatment at a concentration of 10 μM significantly inhibited proliferation, migration, invasion, and induced apoptosis.
p‑EGFR↓,
JAK2↓,
STAT5↓,
cycD1↓,
hTERT↓,
AP-1↓,
MMP9↓,
miR-21↓,
miR-155↓,
Casp9↑,
BID↑,
ERK↓, ERK1/2
Akt2↓,
DNMT1↓,
P53↑,
survivin↓,
Casp3↑,
ROS↑, cytotoxicity of silibinin in Hep-2 cells was associated with the accumulation of intracellular reactive oxygen species (ROS), which could be mitigated by the ROS scavenger NAC.

1316- SIL,  Chemo,    Silymarin and Cancer: A Dual Strategy in Both in Chemoprevention and Chemosensitivity
- Analysis, Var, NA
TumCCA↑, limiting the progression of cancer cells through different phases of the cycle—thus forcing them to evolve towards a process of cell death
p42↓,
P450↓,
OATPs↓, silibinin has been shown to inhibit OATP1B1, OATP1B3 and OATP2B1
chemoP↑,
ChemoSen↑,

3282- SIL,    Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions
- Review, NA, NA
hepatoP↑, This group of flavonoids has been extensively studied and they have been used as hepato-protective substances
AntiCan↑, however, silymarin compounds have clear anticancer effects
TumCMig↓, decreasing migration through multiple targeting, decreasing hypoxia inducible factor-1α expression, i
Hif1a↓, In prostate cancer cells silibinin inhibited HIF-1α translation
selectivity↑, antitumoral activity of silymarin compounds is limited to malignant cells while the nonmalignant cells seem not to be affected
toxicity∅, long history of silymarin use in human diseases without toxicity after prolonged administration.
*antiOx↑, as an antioxidant, by scavenging prooxidant free radicals
*Inflam↓,
*NA↓, antiinflammatory effects similar to those of indomethacin,
TumCCA↑, MDA-MB 486 breast cancer cells, G1 arrest was found due to increased p21 and decreased CDKs activity
P21↑,
CDK4↓,
NF-kB↓, human prostate carcinoma cells, silymarin decreased ligand binding to Erb1 135 and NF-kB expression was strongly inhibited by silymarin in hepatoma cell
ERK↓, human prostate carcinoma cells, silymarin decreased ligand binding to Erb1 135 and NF-kB expression was strongly inhibited by silymarin in hepatoma cell
PSA↓, Treating prostate carcinoma cells with silymarin the levels of PSA were significantly decreased and cell growth was inhibited through decreased CDK activity and induction of Cip1/p21 and Kip1/p27. 1
TumCG↓,
p27↑,
COX2↓, such as anti-COX2 and anti-IL-1α activity, 140 antiangiogenic effects through inhibition of VEGF secretion, upregulation of Insulin like Growth Factor Binding Protein 3 (IGFBP3), 141 and inhibition of androgen receptors.
IL1↓,
VEGF↓,
IGFBP3↑,
AR↓,
STAT3↓, downregulation of the STAT3 pathway which was seen in many cell models.
Telomerase↓, silymarin has the ability to decrease telomerase activity in prostate cancer cells
Cyt‑c↑, mitochondrial cytochrome C release-caspase activation.
Casp↑,
eff↝, Malignant p53 negative cells show only minimal apoptosis when treated with silymarin. Therefore, one conclusion is that silymarin may be useful in tumors with conserved p53.
HDAC↓, inhibit histone deacetylase activity;
HATs↑, increase histone acetyltransferase activity
Zeb1↓, reduce expression of the transcription factor ZEB1
E-cadherin↑, increase expression of E-cadherin;
miR-203↑, increase expression of miR-203
NHE1↓, reduce activation of sodium hydrogen isoform 1 exchanger (NHE1)
MMP2↓, target β catenin and reduce the levels of MMP2 and MMP9
MMP9↓,
PGE2↓, reduce activation of prostaglandin E2
Vim↓, suppress vimentin expression
Wnt↓, inhibit Wnt signaling
angioG↓, Silymarin inhibits angiogenesis.
VEGF↓, VEGF downregulation
*TIMP1↓, Silymarin has the capacity to decrease TIMP1 expression166–168 in mice.
EMT↓, found that silibinin had no effect on EMT. However, the opposite was found in other malignant tissues160–162 where it showed inhibitory effects.
TGF-β↓, Silibinin reduces the expression of TGF β2 in different tumors such as triple negative breast, 174 prostate, and colorectal cancers.
CD44↓, Silibinin decreased CD44 expression and the activation of EGFR (epidermal growth factor receptor)
EGFR↓,
PDGF↓, silibinin had the ability to downregulate PDFG in fibroblasts, thus decreasing proliferation.
*IL8↓, Flavonoids, in general, reduce levels of IL-8. Curcumin, 200 apigenin, 201 and silybin showed the ability to decrease IL-8 levels
SREBP1↓, Silymarin inhibited STAT3 phosphorylation and decreased the expression of intranuclear sterol regulatory element binding protein 1 (SREBP1), decreasing lipid synthesis.
MMP↓, reduced membrane potential and ATP content
ATP↓,
uPA↓, silibinin decreased MMP2, MMP9, and urokinase plasminogen activator receptor level (uPAR) in neuroblastoma cells. uPAR is also a marker of cell invasion.
PD-L1↓, Silibinin inhibits PD-L1 by impeding STAT5 binding in NSCLC.
NOTCH↓, Silybin inhibited Notch signaling in hepatocellular carcinoma cells showing antitumoral effects
*SIRT1↑, Silymarin can also increase SIRT1 expression in other tissues, such as hippocampus, 221 articular chondrocytes, 222 and heart muscle
SIRT1↓, Silymarin seems to act differently in tumors: in lung cancer cells SIRT downregulated SIRT1 and exerted multiple antitumor effects such as reduced adhesion and migration and increased apoptosis.
CA↓, Silymarin has the ability to inhibit CA isoforms CA I and CA II.
Ca+2↑, ilymarin increases mitochondrial release of Ca++ and lowers mitochondrial membrane potential in cancer cell
chemoP↑, Silymarin: Decreasing Side Effects and Toxicity of Chemotherapeutic Drugs
cardioP↑, There is also evidence that it protects the heart from doxorubicin toxicity, however, it is less potent than quercetin in this effect.
Dose↝, oral administration of 240 mg of silybin to 6 healthy volunteers the following results were obtained 377 : maximum\,plasmaconcentration0.34±0.16⁢𝜇⁢g/m⁢L
Half-Life↝, and time to maximum plasma concentration 1.32 ± 0.45 h. Absorption half life 0.17 ± 0.09 h, elimination half life 6.32 ± 3.94 h
BioAv↓, silymarin is not soluble in water and oral administration shows poor absorption in the alimentary tract (approximately 1% in rats,
BioAv↓, Our conclusion is that, from a bioavailability standpoint, it is much easier to achieve migration inhibition, than proliferative reduction.
BioAv↓, Combination with succinate: is available on the market under the trade mark Legalon® (bis hemisuccinate silybin). Combination with phosphatidylcholine:
toxicity↝, 13 g daily per os divided into 3 doses was well tolerated. The most frequent adverse event was asymptomatic liver toxicity.
Half-Life↓, It may be necessary to administer 800 mg 4 times a day because the half-life is short.
ROS↓, its ability as an antioxidant reduces ROS production
FAK↓, Silibinin decreased human osteosarcoma cell invasion through Erk inhibition of a FAK/ERK/uPA/MMP2 pathway

3290- SIL,    A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents
- Analysis, Var, NA
hepatoP↑, well as hepatoprotective agents.
chemoP↑, silymarin could be beneficial to oncology patients, especially for the treatment of the side effects of anticancer chemotherapeutics.
*lipid-P↓, Silymarin has been shown to significantly reduce lipid peroxidation and exhibit anti-oxidant, antihypertensive, antidiabetic, and hepatoprotective effects
*antiOx↑,
tumCV↓, reduces the viability, adhesion, and migration of tumor cells by induction of apoptosis and formation of reactive oxygen species (ROS), reducing glutathione levels, B-cell lymphoma 2 (Bcl-2), survivin, cyclin D1, Notch 1 intracellular domain (NICD),
TumCMig↓,
Apoptosis↑,
ROS↑,
GSH↓,
Bcl-2↓,
survivin↓,
cycD1↓,
NOTCH1↓,
BAX↑, as well as enhancing the amount of Bcl-2-associated X protein (Bax) level (
NF-kB↓, The suppression of NK-κB-regulated gene products (e.g., cyclooxygenase-2 (COX-2), lipoxygenase (LOX), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF), and interleukin-1 (IL-1)) mediates the anti-inflammatory effect of silymarin
COX2↓,
LOX1↓,
iNOS↓,
TNF-α↓,
IL1↓,
Inflam↓,
*toxicity↓, Silymarin is also safe for humans, hence at therapeutic doses patients demonstrated no negative effects at the high dose of 700 mg, three times a day, for 24 weeks
CXCR4↓, fig 2
EGFR↓,
ERK↓,
MMP↓, reduction in mitochondrial transmembrane potential due to an increase in cytosolic cytochrome complex (Cyt c) levels.
Cyt‑c↑,
TumCCA↑, Moreover, silymarin increased the percentage of cells in the gap 0/gap 1 (G0/G1) phase and decreased the percentage of cells in the synthesis (S)-phase,
RB1↑, concomitant up-regulation of retinoblastoma protein (Rb), p53, cyclin-dependent kinase inhibitor 1 (p21Cip1), and cyclin-dependent kinase inhibitor 1B (p27Kip1)
P53↑,
P21↑,
p27↑,
cycE↓, and down-regulation of cyclin D1, cyclin E, cyclin-dependent kinase 4 (CDK4), and phospho-Rb
CDK4↓,
p‑pRB↓,
Hif1a↓, silibinin inhibited proliferation of Hep3B cells due to simultaneous induction of apoptosis and prevented the accumulation
cMyc↓, Silibinin also reduces cellular myelocytomatosis oncogene (c-MYC) expression, a key regulator of cancer metabolism in pancreatic cancer cells
IL1β↓, Silymarin can also inhibit the production of inflammatory cytokines, such as interleukin-1beta (IL-1β), interferon-gamma (IFNγ),
IFN-γ↓,
PCNA↓, ilymarin suppresses the high proliferative activity of cells started with a carcinogen so that it significantly inhibits proliferating cell nuclear antigen (PCNA) and cyclin D1 labeling indices
PSA↓, In another patent, S. marianum has been used as an estrogen receptor β-agonist and an inhibitor of PSA for treating prostate cancer
CYP1A1↓, Silymarin prevents the expression of CYP1A1 and COX-2

3293- SIL,    Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer
- Review, Var, NA
hepatoP↑, Silymarin has been shown to protect the liver in both experimental models and clinical studies.
TumMeta↓, In addition to its anti-metastatic activity, silymarin has also been reported to exhibit anti-inflammatory activity
Inflam↓,
chemoP↑, The chemoprotective effects of silymarin and silibinin (its major constituent) suggest they could be applied to reduce the side effects and increase the anti-cancer effects of chemotherapy and radiotherapy in various cancer types, especially in GC
radioP↑,
Half-Life↝, silibinin showed a 6-h half-life
*GSTs↑, Oral administration of silibinin leads to an increase in glutathione S-transferase (GST) and quinone reductase (QR) activity in the liver, stomach, lungs, small bowel, and skin, in a time- and dose-dependent manner
p‑JNK↑, Silymarin significantly up-regulated the levels of phosphorylated (p)-JNK, Bax, and p-p38, and cleaved poly-ADP ribose polymerase (PARP), while it down-regulated Bcl-2 and p-ERK1/2 expression, in a dose-dependent manner.
BAX↑,
p‑p38↑,
cl‑PARP↑,
Bcl-2↓,
p‑ERK↓,
TumVol↓, Silymarin (100 mg/kg) decreased the tumor volume in an AGS xenograft mouse model and increased apoptosis in the tumors.
eff↑, resveratrol, lycopene, sulforaphane, or silybinin have been shown to have anti-tumor activity, along with relatively low-toxicity to normal cells. Therefore they could be used in combination
TumCCA↑, Silibinin induced apoptosis and cell cycle arrest in G2/M phase in MGC803 cells
STAT3↓, Silybinin down-regulated p-STAT3 protein expression and also its downstream genes (such as Mcl-1, survivin, Bcl-xL, and STAT3).
Mcl-1↓,
survivin↓,
Bcl-xL↓,
Casp3↑, Silibinin increased caspase-3 and caspase-9 mRNA and protein expression levels.
Casp9↑,
eff↑, Therefore, the anti-cancer activity of silibinin might be enhanced by HDAC inhibitors
CXCR4↓, Silymarin significantly induced apoptosis and decreased the expression level of CXCR-4 in HepG2 cells in a concentration-dependent manner.
Dose↝, It has been shown to be tolerated by patients at a large dose (700 mg) thrice per day over six months

3296- SIL,    Silibinin induces oral cancer cell apoptosis and reactive oxygen species generation by activating the JNK/c-Jun pathway
- in-vitro, Oral, Ca9-22 - in-vivo, Oral, YD10B
TumCP↓, Silibinin effectively suppressed YD10B and Ca9-22 cell proliferation and colony formation in a dose-dependent manner.
TumCCA↑, Moreover, it induced cell cycle arrest in the G0/G1 phase, apoptosis, and ROS generation in these cells.
ROS↑,
SOD1↓, silibinin downregulated SOD1 and SOD2 and triggered the JNK/c-Jun pathway in oral cancer cells.
SOD2↓,
*JNK↑, inducing apoptosis, G0/G1 arrest, ROS generation, and activation of the JNK/c-Jun pathway.
toxicity?, Silibinin significantly inhibited xenograft tumor growth in nude mice, with no obvious toxicity.
TumCMig↓, Silibinin inhibits oral cancer cell migration and invasion
TumCI↓,
N-cadherin↓, silibinin downregulated N-cadherin and vimentin expression and upregulated E-cadherin expression in YD10B and Ca9-22 cells
Vim↓,
E-cadherin↑,
EMT↓, Together, these results indicate that silibinin inhibits the migration and invasion of oral cancer cells by suppressing the EMT.
P53↑, silibinin significantly induced the expression of p53, cleaved caspase-3, cleaved PARP, and Bax, and downregulated the expression of the anti-apoptotic marker protein Bcl-2
cl‑Casp3↑,
cl‑PARP↑,
BAX↑,
Bcl-2↓,
SOD↓, silibinin inhibits SOD expression, induces ROS production, and activates the JNK/c-Jun pathway in oral cancer cells.

3297- SIL,  Rad,    Studies on radiation sensitization efficacy by silymarin in colon carcinoma cells
- in-vitro, CRC, HCT15 - in-vitro, CRC, RKO
TumCP↓, Silymarin was found to reduce proliferation of the human colon carcinoma cells in a concentration and timedependent manner.
RadioS↑, Moreover, percentage of cell death was also increased in combined treatment (20µg/ml of silymarin + radiation)
TumCCA↑, combination increases the arrest of cells in G 2 /M phase of cell cycle, DNA damage induced decrease in MMP and a decrease of the reactive oxygen species (ROS) levels, which are associated with an increase in cell death
DNAdam↓,
MMP↓,
ROS↓,
*radioP↑, Noteworthy, since silymarin was previously shown to confer protection against radiation in at least some types of normal tissues

3301- SIL,    Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid
- Review, Var, NA
Inflam↓, graphical abstract
TumCCA↑,
Apoptosis↓,
TumMeta↓,
TumCG↓,
angioG↓,
chemoP↑, The chemo-protective effects of silymarin and silibinin propose that they could be applied to decrease the side effects and increase the anti-tumor effects of chemotherapy and radiotherapy in different types of cancers.
radioP↑,
p‑ERK↓, fig 2
p‑p38↓,
p‑JNK↓,
P53↑,
Bcl-2↓,
Bcl-xL↓,
TGF-β↓,
MMP2↓,
MMP9↓,
E-cadherin↑,
Wnt↓,
Vim↓,
VEGF↓,
IL6↓,
STAT3↓,
*ROS↓,
IL1β↓,
PGE2↓,
CDK1↓, Causes cell cycle arrest by down-regulating CDK1, cyclinB1, survivin, Bcl-xl, Mcl-1 and activating caspase 3 and caspase 9,
CycB↓,
survivin↓,
Mcl-1↓,
Casp3↑,
Casp9↑,
cMyc↓, Silibinin treatment diminishes c-MYC
COX2↓, Silibinin considerably down-regulated the expression of COX-2, HIF-1α, VEGF, Ang-2, Ang-4, MMP-2, MMP-9, CCR-2 and CXCR-4
Hif1a↓,
CXCR4↓,
CSCs↓, HCT-116 cells, Induction of apoptosis, suppression of migration, elimination of CSCs. Attenuation of EMT via decreased expression of N- cadherin and vimentin and increased expression of (E-cadherin).
EMT↓,
N-cadherin↓,
PCNA↓, Decrease in PCNA and cyclin D1 level.
cycD1↓,
ROS↑, Hepatocellular carcinoma: Silymarin nanoemulsion reduced the cell viability and increased ROS intensity and chromatin condensation.
eff↑, Silymarin + Curcumin
eff↑, Silibinin + Metformin
eff↑, Silibinin + 1, 25-vitamin D3
HER2/EBBR2↓, Significant down regulation of HER2 by 150 and 250 µM of silybin after 24, 48 and 72 h.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 9

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   p‑Akt↓,1,   Akt2↓,1,   angioG↓,3,   AntiCan↑,1,   antiOx↑,1,   AP-1↓,1,   Apoptosis↓,1,   Apoptosis↑,2,   AR↓,1,   ATP↓,1,   BAX↑,3,   Bcl-2↓,4,   Bcl-xL↓,2,   BID↑,1,   BioAv↓,3,   CA↓,1,   Ca+2↑,1,   cardioP↑,1,   Casp↑,1,   Casp3↑,3,   cl‑Casp3↑,1,   Casp9↑,3,   CD44↓,1,   CDK1↓,1,   CDK2↓,1,   CDK4↓,3,   chemoP↑,5,   ChemoSen↑,1,   cMyc↓,2,   COX2↓,4,   CSCs↓,1,   CXCR4↓,3,   CycB↓,1,   cycD1↓,4,   cycE↓,1,   CYP1A1↓,1,   Cyt‑c↑,2,   DNAdam↓,1,   DNMT1↓,1,   Dose↝,2,   E-cadherin↑,3,   E2Fs↓,1,   eff↑,5,   eff↝,1,   EGFR↓,2,   p‑EGFR↓,2,   EMT↓,3,   ERK↓,3,   p‑ERK↓,2,   FAK↓,1,   GSH↓,1,   Half-Life↓,1,   Half-Life↝,2,   HATs↑,1,   HDAC↓,1,   hepatoP↑,3,   HER2/EBBR2↓,1,   HIF-1↓,1,   Hif1a↓,3,   hTERT↓,1,   IFN-γ↓,1,   IGFBP3↑,1,   IL1↓,2,   IL1β↓,2,   IL6↓,2,   Inflam↓,4,   iNOS↓,1,   JAK2↓,2,   p‑JNK↓,1,   p‑JNK↑,1,   LOX1↓,1,   MAPK↓,1,   Mcl-1↓,2,   miR-155↓,1,   miR-203↑,1,   miR-21↓,1,   MMP↓,3,   MMP2↓,3,   MMP9↓,3,   N-cadherin↓,2,   NF-kB↓,4,   NHE1↓,1,   NOTCH↓,1,   NOTCH1↓,1,   OATPs↓,1,   P21↑,2,   p27↑,2,   p‑p38↓,1,   p‑p38↑,1,   p42↓,1,   P450↓,1,   P53↑,4,   cl‑PARP↑,2,   PCNA↓,2,   PD-L1↓,2,   PDGF↓,1,   PGE2↓,2,   PI3K↓,2,   p‑pRB↓,1,   PSA↓,2,   radioP↑,2,   RadioS↑,1,   RB1↑,1,   ROS↓,2,   ROS↑,4,   selectivity↑,1,   SIRT1↓,1,   Slug↓,1,   Snail↓,1,   SOD↓,1,   SOD1↓,1,   SOD2↓,1,   SREBP1↓,1,   STAT3↓,3,   p‑STAT3↓,1,   STAT5↓,1,   survivin↓,4,   Telomerase↓,1,   TGF-β↓,2,   TNF-α↓,1,   toxicity?,1,   toxicity↝,1,   toxicity∅,1,   TumCCA↑,9,   TumCD↑,1,   TumCG↓,2,   TumCI↓,1,   TumCMig↓,3,   TumCP↓,4,   tumCV↓,1,   TumMeta↓,3,   TumVol↓,1,   uPA↓,1,   VEGF↓,4,   Vim↓,3,   Wnt↓,2,   Wnt/(β-catenin)↓,1,   Zeb1↓,2,   α-SMA↓,1,  
Total Targets: 140

Results for Effect on Normal Cells:
antiOx↑,2,   GSTs↑,1,   IL8↓,1,   Inflam↓,1,   JNK↑,1,   lipid-P↓,1,   NA↓,1,   radioP↑,1,   ROS↓,1,   SIRT1↑,1,   TIMP1↓,1,   toxicity↓,1,  
Total Targets: 12

Scientific Paper Hit Count for: TumCCA, Tumor cell cycle arrest
9 Silymarin (Milk Thistle) silibinin
1 Chemotherapy
1 Radiotherapy/Radiation
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:154  Target#:322  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page