condition found
Features: |
Silymarin (Milk Thistle) Flowering herb related to daisy and ragweed family. Silibinin (INN), also known as silybin is the major active constituent of silymarin, a standardized extract of the milk thistle seeds. -a flavonoid combination of 65–80% of seven flavolignans; the most important of these include silybin, isosilybin, silychristin, isosilychristin, and silydianin. Silybin is the most abundant compound in around 50–70% in isoforms silybin A and silybin B -Note half-life 6hrs?. BioAv not soluble in water, low bioA (1%). 240mg yielded only 0.34ug/ml plasma level. oral administration of SM (equivalent to 120 mg silibinin), total (unconjugated + conjugated) silibinin concentration in plasma was 1.1–1.3 μg/mL, so can on acheive levels used in most in-vitro studies. Pathways: - results for both inducing and reducing ROS in cancer cells. In normal cell seems to consistently lower ROS. Given low bioavailability seems unlikely one could acheieve levels in vivo to raise ROS(except level in GUT could be much higher (800uM). - ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, P53↑, HSP↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, - inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, β-catenin↓, Notch2↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
uPA (urokinase plasminogen activator) is a serine protease that plays a crucial role in the conversion of plasminogen to plasmin, an enzyme responsible for degrading various components of the extracellular matrix (ECM). This activity is central to processes such as tissue remodeling, cell migration, and angiogenesis. In the context of cancer, uPA facilitates tumor invasion and metastasis by promoting ECM degradation, while its interaction with its receptor (uPAR) and inhibitors (such as PAI-1) forms a regulatory axis that is frequently dysregulated in malignancies. Patients with higher pretreatment serum uPA (≥1 ng/ml) had significantly shorter OS. Elevated uPA expression has been observed in a broad range of cancers, including breast, colorectal, lung, and prostate cancers. These high levels are often indicative of increased proteolytic activity within the tumor microenvironment. Tumors with aggressive behavior often exhibit upregulation of uPA, along with its receptor uPAR. This upregulation enhances plasmin generation and leads to an environment conducive to invasion and metastasis. Elevated uPA levels in tumor tissues have been strongly associated with poor clinical outcomes. High uPA expression is correlated with increased risk of metastasis, higher likelihood of recurrence, and reduced overall survival in several cancer types. |
3332- | SIL,  |   | Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2 |
- | in-vitro, | Lung, | A549 |
3282- | SIL,  |   | Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions |
- | Review, | NA, | NA |
3288- | SIL,  |   | Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations |
- | Review, | Var, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:154 Target#:428 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid