condition found tbRes List
SIL, Silymarin (Milk Thistle) silibinin: Click to Expand ⟱
Features:
Silymarin (Milk Thistle) Flowering herb related to daisy and ragweed family.
Silibinin (INN), also known as silybin is the major active constituent of silymarin, a standardized extract of the milk thistle seeds.
-a flavonoid combination of 65–80% of seven flavolignans; the most important of these include silybin, isosilybin, silychristin, isosilychristin, and silydianin. Silybin is the most abundant compound in around 50–70% in isoforms silybin A and silybin B

-Note half-life 6hrs?.
BioAv not soluble in water, low bioA (1%). 240mg yielded only 0.34ug/ml plasma level. oral administration of SM (equivalent to 120 mg silibinin), total (unconjugated + conjugated) silibinin concentration in plasma was 1.1–1.3 μg/mL, so can on acheive levels used in most in-vitro studies.
Pathways:
- results for both inducing and reducing ROS in cancer cells. In normal cell seems to consistently lower ROS. Given low bioavailability seems unlikely one could acheieve levels in vivo to raise ROS(except level in GUT could be much higher (800uM).
- ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, β-catenin↓, Notch2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


MMPs, Matrix metalloproteinases: Click to Expand ⟱
Source:
Type:
Family of zinc-dependent proteolytic enzymes that play a key role in degrading the extracellular matrix (ECM).; are metalloproteinases that are calcium-dependent zinc-containing endopeptidases;[1] other family members are adamalysins, serralysins, and astacins. The MMPs belong to a larger family of proteases known as the metzincin superfamily.[2]
MMP secretion: matrix metalloproteinase (MMP) is a kind of enzymes secreted.
by tumor cell to degrade ECM, facilitating the migration of tumor cells.

MMPs are generally considered protumorigenic due to their role in promoting tumor invasion, metastasis, and angiogenesis. They facilitate the breakdown of the extracellular matrix, allowing cancer cells to invade surrounding tissues and spread to distant sites.


Scientific Papers found: Click to Expand⟱
3314- SIL,    Silymarin: Unveiling its pharmacological spectrum and therapeutic potential in liver diseases—A comprehensive narrative review
- Review, NA, NA
*antiOx↑, silymarin, demonstrating remarkable antioxidant and hepatoprotective properties in extensive preclinical investigations.
*hepatoP↑, It can protect healthy liver cells or those that have not yet sustained permanent damage by reducing oxidative stress and mitigating cytotoxicity.
*Half-Life↑, The main ingredient in silymarin, silibinin, normally takes two to four hours to reach its peak plasma concentration after oral consumption, and it has a 6‐hour plasma half‐life
*ROS↓, silibinin has potent anti‐ROS qualities,
*GSH↑, silymarin, the precursor to silibinin, can increase glutathione production in the liver and hence increase the liver tissues' antioxidant capacity
*hepatoP↑, silymarin, the precursor to silibinin, can increase glutathione production in the liver and hence increase the liver tissues' antioxidant capacity
*lipid-P↓,
*TNF-α↓, inhibit the production of pro‐inflammatory cytokines, such as TNF‐α, IFN‐γ, IL‐2, and IL‐4, which are crucial in the inflammatory cascade
*IFN-γ↓,
*IL2↓,
*IL4↓,
*NF-kB↓, Silymarin's mechanism involves suppressing NF‐κB activation,
*iNOS↓, It downregulates inflammatory mediators like interleukins, TNF‐α, and iNOS, which are involved in various diseases.
*OATPs↓, Its inhibition of transporters, including OATPs and OCTs, may also affect members of the solute carrier family
*OCT4↓,
*Inflam↓, Silymarin may have anti‐inflammatory properties that limit the production of inflammatory mediators like NF‐B and inflammatory metabolites like prostaglandin E2 (PGE2)
*PGE2↓,
MMPs↓, Silymarin significantly inhibits matrix metalloproteinases (MMPs), essential for cancer metastasis,
VEGF↓, Additionally, silymarin down‐regulates VEGF expression, contributing to anti‐angiogenic effects, and has the potential to reverse STAT‐3‐associated cancer drug resistance.
angioG↓,
STAT3↓,
*ALAT↓, The research revealed improved liver function as seen by lower levels of ALT, AST, and alkaline phosphatase, as well as a considerably lower likelihood of developing DILI four weeks after starting silymarin treatment
*AST↓,
Dose↝, The suggested dosage of silymarin has been used in clinical trials for up to 48 weeks at a dose of 2100 mg/day and for up to 4 years at a dose of up to 420 mg/day.

3288- SIL,    Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations
- Review, Var, NA
Inflam↓, Silymarin, a milk thistle extract, has anti-inflammatory, immunomodulatory, anti-lipid peroxidative, anti-fibrotic, anti-oxidative, and anti-proliferative properties.
lipid-P↓,
TumMeta↓, Silymarin exhibits not only anti-cancer functions through modulating various hallmarks of cancer, including cell cycle, metastasis, angiogenesis, apoptosis, and autophagy, by targeting a plethora of molecules
angioG↓,
chemoP↑, but also plays protective roles against chemotherapy-induced toxicity, such as nephrotoxicity,
EMT↓, Figure 2, Metastasis
HDAC↓,
HATs↑,
MMPs↓,
uPA↓,
PI3K↓,
Akt↓,
VEGF↓, Angiogenesis
CD31↓,
Hif1a↓,
VEGFR2↓,
Raf↓,
MEK↓,
ERK↓,
BIM↓, apoptosis
BAX↑,
Bcl-2↓,
Bcl-xL↓,
Casp↑,
MAPK↓,
P53↑,
LC3II↑, Autophagy
mTOR↓,
YAP/TEAD↓,
*BioAv↓, Additionally, the oral bioavailability of silymarin in rats is only 0.73 %
MMP↓, silymarin treatment reduced mitochondrial transmembrane potential, leading to an increase in cytosolic cytochrome c (Cyt c), downregulating proliferation-associated proteins (PCNA, c-Myc, cyclin D1, and β-catenin)
Cyt‑c↑,
PCNA↓,
cMyc↓,
cycD1↓,
β-catenin/ZEB1↓,
survivin↓, and anti-apoptotic proteins (survivin and Bcl-2), and upregulating pro-apoptotic proteins (caspase-3, Bax, APAF-1, and p53)
APAF1↑,
Casp3↑,
MDSCs↓, ↓MDSCs, ↓IL-10, ↑IL-2 and IFN-γ
IL10↓,
IL2↑,
IFN-γ↑,
hepatoP↑, Moreover, in a randomized clinical trial, silymarin attenuated hepatoxicity in non-metastatic breast cancer patients undergoing a doxorubicin/cyclophosphamide-paclitaxel regimen
cardioP↑, For example, Rašković et al. studied the hepatoprotective and cardioprotective effects of silymarin (60 mg/kg orally) in rats following DOX
GSH↑, silymarin could protect the kidney and heart from ADR toxicity by protecting against glutathione (GSH) depletion and inhibiting lipid peroxidation
neuroP↑, silymarin attenuated the neurotoxicity of docetaxel by reducing apoptosis, inflammation, and oxidative stress


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   angioG↓,2,   APAF1↑,1,   BAX↑,1,   Bcl-2↓,1,   Bcl-xL↓,1,   BIM↓,1,   cardioP↑,1,   Casp↑,1,   Casp3↑,1,   CD31↓,1,   chemoP↑,1,   cMyc↓,1,   cycD1↓,1,   Cyt‑c↑,1,   Dose↝,1,   EMT↓,1,   ERK↓,1,   GSH↑,1,   HATs↑,1,   HDAC↓,1,   hepatoP↑,1,   Hif1a↓,1,   IFN-γ↑,1,   IL10↓,1,   IL2↑,1,   Inflam↓,1,   LC3II↑,1,   lipid-P↓,1,   MAPK↓,1,   MDSCs↓,1,   MEK↓,1,   MMP↓,1,   MMPs↓,2,   mTOR↓,1,   neuroP↑,1,   P53↑,1,   PCNA↓,1,   PI3K↓,1,   Raf↓,1,   STAT3↓,1,   survivin↓,1,   TumMeta↓,1,   uPA↓,1,   VEGF↓,2,   VEGFR2↓,1,   YAP/TEAD↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 48

Results for Effect on Normal Cells:
ALAT↓,1,   antiOx↑,1,   AST↓,1,   BioAv↓,1,   GSH↑,1,   Half-Life↑,1,   hepatoP↑,2,   IFN-γ↓,1,   IL2↓,1,   IL4↓,1,   Inflam↓,1,   iNOS↓,1,   lipid-P↓,1,   NF-kB↓,1,   OATPs↓,1,   OCT4↓,1,   PGE2↓,1,   ROS↓,1,   TNF-α↓,1,  
Total Targets: 19

Scientific Paper Hit Count for: MMPs, Matrix metalloproteinases
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:154  Target#:204  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page