condition found
Features: |
Silymarin (Milk Thistle) Flowering herb related to daisy and ragweed family. Silibinin (INN), also known as silybin is the major active constituent of silymarin, a standardized extract of the milk thistle seeds. -a flavonoid combination of 65–80% of seven flavolignans; the most important of these include silybin, isosilybin, silychristin, isosilychristin, and silydianin. Silybin is the most abundant compound in around 50–70% in isoforms silybin A and silybin B -Note half-life 6hrs?. BioAv not soluble in water, low bioA (1%). 240mg yielded only 0.34ug/ml plasma level. oral administration of SM (equivalent to 120 mg silibinin), total (unconjugated + conjugated) silibinin concentration in plasma was 1.1–1.3 μg/mL, so can on acheive levels used in most in-vitro studies. Pathways: - results for both inducing and reducing ROS in cancer cells. In normal cell seems to consistently lower ROS. Given low bioavailability seems unlikely one could acheieve levels in vivo to raise ROS(except level in GUT could be much higher (800uM). - ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, P53↑, HSP↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, - inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, - inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, β-catenin↓, Notch2↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Hypoxia-Inducible-Factor 1A (HIF1A gene, HIF1α, HIF-1α protein product) -Dominantly expressed under hypoxia(low oxygen levels) in solid tumor cells -HIF1A induces the expression of vascular endothelial growth factor (VEGF) -High HIF-1α expression is associated with Poor prognosis -Low HIF-1α expression is associated with Better prognosis -Functionally, HIF-1α is reported to regulate glycolysis, whilst HIF-2α regulates genes associated with lipoprotein metabolism. -Cancer cells produce HIF in response to hypoxia in order to generate more VEGF that promote angiogenesis Key mediators of aerobic glycolysis regulated by HIF-1α. -GLUT-1 → regulation of the flux of glucose into cells. -HK2 → catalysis of the first step of glucose metabolism. -PKM2 → regulation of rate-limiting step of glycolysis. -Phosphorylation of PDH complex by PDK → blockage of OXPHOS and promotion of aerobic glycolysis. -LDH (LDHA): Rapid ATP production, conversion of pyruvate to lactate; HIF-1α Inhibitors: -Curcumin: disruption of signaling pathways that stabilize HIF-1α (ie downregulate). -Resveratrol: downregulate HIF-1α protein accumulation under hypoxic conditions. -EGCG: modulation of upstream signaling pathways, leading to decreased HIF-1α activity. -Emodin: reduce HIF-1α expression. (under hypoxia). -Apigenin: inhibit HIF-1α accumulation. |
3325- | SIL,  |   | Modulatory effect of silymarin on pulmonary vascular dysfunction through HIF-1α-iNOS following rat lung ischemia-reperfusion injury |
- | in-vivo, | Nor, | NA |
3326- | SIL,  |   | Silymarin suppresses proliferation of human hepatocellular carcinoma cells under hypoxia through downregulation of the HIF-1α/VEGF pathway |
- | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | Hep3B |
3327- | SIL,  |   | Effects of silymarin on HIF‑1α and MDR1 expression in HepG‑2 cells under hypoxia |
- | in-vitro, | Liver, | HepG2 |
3328- | SIL,  |   | Modulatory effect of silymarin on inflammatory mediators in experimentally induced benign prostatic hyperplasia: emphasis on PTEN, HIF-1α, and NF-κB |
- | in-vivo, | BPH, | NA |
3329- | SIL,  |   | Silymarin regulates the HIF-1 and iNOS expression in the brain and Gills of the hypoxic-reoxygenated rainbow trout (Oncorhynchus mykis) |
- | in-vivo, | Nor, | NA |
1001- | SIL,  |   | Silibinin down-regulates PD-L1 expression in nasopharyngeal carcinoma by interfering with tumor cell glycolytic metabolism |
- | in-vitro, | NA, | NA |
3282- | SIL,  |   | Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions |
- | Review, | NA, | NA |
3288- | SIL,  |   | Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations |
- | Review, | Var, | NA |
3289- | SIL,  |   | Silymarin: a promising modulator of apoptosis and survival signaling in cancer |
- | Review, | Var, | NA |
3290- | SIL,  |   | A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents |
- | Analysis, | Var, | NA |
- | vitro+vivo, | Pca, | LNCaP | - | in-vitro, | Pca, | 22Rv1 |
3301- | SIL,  |   | Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid |
- | Review, | Var, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:154 Target#:143 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid