condition found tbRes List
SIL, Silymarin (Milk Thistle) silibinin: Click to Expand ⟱
Features:
Silymarin (Milk Thistle) Flowering herb related to daisy and ragweed family.
Silibinin (INN), also known as silybin is the major active constituent of silymarin, a standardized extract of the milk thistle seeds.
-a flavonoid combination of 65–80% of seven flavolignans; the most important of these include silybin, isosilybin, silychristin, isosilychristin, and silydianin. Silybin is the most abundant compound in around 50–70% in isoforms silybin A and silybin B

-Note half-life 6hrs?.
BioAv not soluble in water, low bioA (1%). 240mg yielded only 0.34ug/ml plasma level. oral administration of SM (equivalent to 120 mg silibinin), total (unconjugated + conjugated) silibinin concentration in plasma was 1.1–1.3 μg/mL, so can on acheive levels used in most in-vitro studies.
Pathways:
- results for both inducing and reducing ROS in cancer cells. In normal cell seems to consistently lower ROS. Given low bioavailability seems unlikely one could acheieve levels in vivo to raise ROS(except level in GUT could be much higher (800uM).
- ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, β-catenin↓, Notch2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCI, Tumor Cell invasion: Click to Expand ⟱
Source:
Type:
Tumor cell invasion is a critical process in cancer progression and metastasis, where cancer cells spread from the primary tumor to surrounding tissues and distant organs. This process involves several key steps and mechanisms:

1.Epithelial-Mesenchymal Transition (EMT): Many tumors originate from epithelial cells, which are typically organized in layers. During EMT, these cells lose their epithelial characteristics (such as cell-cell adhesion) and gain mesenchymal traits (such as increased motility). This transition is crucial for invasion.

2.Degradation of Extracellular Matrix (ECM): Tumor cells secrete enzymes, such as matrix metalloproteinases (MMPs), that degrade the ECM, allowing cancer cells to invade surrounding tissues. This degradation facilitates the movement of cancer cells through the tissue.

3.Cell Migration: Once the ECM is degraded, cancer cells can migrate. They often use various mechanisms, including amoeboid movement and mesenchymal migration, to move through the tissue. This migration is influenced by various signaling pathways and the tumor microenvironment.

4.Angiogenesis: As tumors grow, they require a blood supply to provide nutrients and oxygen. Tumor cells can stimulate the formation of new blood vessels (angiogenesis) through the release of growth factors like vascular endothelial growth factor (VEGF). This not only supports tumor growth but also provides a route for cancer cells to enter the bloodstream.

5.Invasion into Blood Vessels (Intravasation): Cancer cells can invade nearby blood vessels, allowing them to enter the circulatory system. This step is crucial for metastasis, as it enables cancer cells to travel to distant sites in the body.

6.Survival in Circulation: Once in the bloodstream, cancer cells must survive the immune response and the shear stress of blood flow. They can form clusters with platelets or other cells to evade detection.

7.Extravasation and Colonization: After traveling through the bloodstream, cancer cells can exit the circulation (extravasation) and invade new tissues. They may then establish secondary tumors (metastases) in distant organs.

8.Tumor Microenvironment: The surrounding microenvironment plays a significant role in tumor invasion. Factors such as immune cells, fibroblasts, and signaling molecules can either promote or inhibit invasion and metastasis.


Scientific Papers found: Click to Expand⟱
3306- SIL,  Rad,    Radioprotective and radiosensitizing properties of silymarin/silibinin in response to ionizing radiation
- Review, Var, NA
radioP↑, Radioprotective and radiosensitizing properties of silymarin/silibinin in response to ionizing radiation
RadioS↑, graphical abstract
TumCMig↓, mechanisms for radiosensitization of silymarin/silibinin have been reported including suppression of migration and invasion of cancer cells, inhibition of angiogenesis, induction of apoptosis and cell cycle arrest, damage to DNA
TumCI↓,
angioG↓,
Apoptosis↑,
DNAdam↓,
ROS↑, increasing the formation of free radicals, and targeting some crucial pathways.
*ROS↓, The combination of silymarin/silibinin and irradiation decreases the toxicities caused by ionizing radiation because of their antioxidant, anti-apoptotic, anti-inflammatory and other properties.
*Inflam↓,

3326- SIL,    Silymarin suppresses proliferation of human hepatocellular carcinoma cells under hypoxia through downregulation of the HIF-1α/VEGF pathway
- in-vitro, Liver, HepG2 - in-vitro, Liver, Hep3B
*hepatoP↑, Silymarin (SM) had been used as a traditional liver protective drug for decades
chemoP↑, SM has chemopreventive and chemosensitizing effects on multiple cancers.
ChemoSen↑,
TumCP↓, SM reduced cellular proliferation, migration, invasion, and colony formation, but induced apoptosis in HepG2 and Hep3B cells under hypoxia conditions.
TumCMig↓,
TumCI↓,
Hif1a↓, The inhibitory effect of SM on HepG2 and Hep3B cells under hypoxia is partially via downregulating HIF-1α/VEGF signaling
VEGF↓,
angioG↓,

1127- SIL,    Silibinin suppresses epithelial–mesenchymal transition in human non-small cell lung cancer cells by restraining RHBDD1
- in-vitro, Lung, A549
TumCP↓,
TumCMig↓,
TumCI↓,
EMT↓,
RHBDD1↓,

3296- SIL,    Silibinin induces oral cancer cell apoptosis and reactive oxygen species generation by activating the JNK/c-Jun pathway
- in-vitro, Oral, Ca9-22 - in-vivo, Oral, YD10B
TumCP↓, Silibinin effectively suppressed YD10B and Ca9-22 cell proliferation and colony formation in a dose-dependent manner.
TumCCA↑, Moreover, it induced cell cycle arrest in the G0/G1 phase, apoptosis, and ROS generation in these cells.
ROS↑,
SOD1↓, silibinin downregulated SOD1 and SOD2 and triggered the JNK/c-Jun pathway in oral cancer cells.
SOD2↓,
*JNK↑, inducing apoptosis, G0/G1 arrest, ROS generation, and activation of the JNK/c-Jun pathway.
toxicity?, Silibinin significantly inhibited xenograft tumor growth in nude mice, with no obvious toxicity.
TumCMig↓, Silibinin inhibits oral cancer cell migration and invasion
TumCI↓,
N-cadherin↓, silibinin downregulated N-cadherin and vimentin expression and upregulated E-cadherin expression in YD10B and Ca9-22 cells
Vim↓,
E-cadherin↑,
EMT↓, Together, these results indicate that silibinin inhibits the migration and invasion of oral cancer cells by suppressing the EMT.
P53↑, silibinin significantly induced the expression of p53, cleaved caspase-3, cleaved PARP, and Bax, and downregulated the expression of the anti-apoptotic marker protein Bcl-2
cl‑Casp3↑,
cl‑PARP↑,
BAX↑,
Bcl-2↓,
SOD↓, silibinin inhibits SOD expression, induces ROS production, and activates the JNK/c-Jun pathway in oral cancer cells.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
angioG↓,2,   Apoptosis↑,1,   BAX↑,1,   Bcl-2↓,1,   cl‑Casp3↑,1,   chemoP↑,1,   ChemoSen↑,1,   DNAdam↓,1,   E-cadherin↑,1,   EMT↓,2,   Hif1a↓,1,   N-cadherin↓,1,   P53↑,1,   cl‑PARP↑,1,   radioP↑,1,   RadioS↑,1,   RHBDD1↓,1,   ROS↑,2,   SOD↓,1,   SOD1↓,1,   SOD2↓,1,   toxicity?,1,   TumCCA↑,1,   TumCI↓,4,   TumCMig↓,4,   TumCP↓,3,   VEGF↓,1,   Vim↓,1,  
Total Targets: 28

Results for Effect on Normal Cells:
hepatoP↑,1,   Inflam↓,1,   JNK↑,1,   ROS↓,1,  
Total Targets: 4

Scientific Paper Hit Count for: TumCI, Tumor Cell invasion
4 Silymarin (Milk Thistle) silibinin
1 Radiotherapy/Radiation
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:154  Target#:324  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page