condition found tbRes List
SIL, Silymarin (Milk Thistle) silibinin: Click to Expand ⟱
Features:
Silymarin (Milk Thistle) Flowering herb related to daisy and ragweed family.
Silibinin (INN), also known as silybin is the major active constituent of silymarin, a standardized extract of the milk thistle seeds.
-a flavonoid combination of 65–80% of seven flavolignans; the most important of these include silybin, isosilybin, silychristin, isosilychristin, and silydianin. Silybin is the most abundant compound in around 50–70% in isoforms silybin A and silybin B

-Note half-life 6hrs?.
BioAv not soluble in water, low bioA (1%). 240mg yielded only 0.34ug/ml plasma level. oral administration of SM (equivalent to 120 mg silibinin), total (unconjugated + conjugated) silibinin concentration in plasma was 1.1–1.3 μg/mL, so can on acheive levels used in most in-vitro studies.
Pathways:
- results for both inducing and reducing ROS in cancer cells. In normal cell seems to consistently lower ROS. Given low bioavailability seems unlikely one could acheieve levels in vivo to raise ROS(except level in GUT could be much higher (800uM).
- ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, β-catenin↓, Notch2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Glycolysis, Glycolysis: Click to Expand ⟱
Source:
Type:
Glycolysis is a metabolic pathway that converts glucose into pyruvate, producing a small amount of ATP (energy) in the process. It is a fundamental process for cellular energy production and occurs in the cytoplasm of cells. In normal cells, glycolysis is tightly regulated and is followed by aerobic respiration in the presence of oxygen, which allows for the efficient production of ATP.
In cancer cells, however, glycolysis is often upregulated, even in the presence of oxygen. This phenomenon is known as the Warburg Mutations in oncogenes (like MYC) and tumor suppressor genes (like TP53) can alter metabolic pathways, promoting glycolysis and other anabolic processes that support cell growth.effect.
Acidosis: The increased production of lactate from glycolysis can lead to an acidic microenvironment, which may promote tumor invasion and suppress immune responses.

Glycolysis is a hallmark of malignancy transformation in solid tumor, and LDH is the key enzyme involved in glycolysis.

Pathways:
-GLUTs, HK2, PFK, PK, PKM2, LDH, LDHA, PI3K/AKT/mTOR, AMPK, HIF-1a, c-MYC, p53, SIRT6, HSP90α, GAPDH, HBT, PPP, Lactate Metabolism, ALDO

Natural products targeting glycolytic signaling pathways https://pmc.ncbi.nlm.nih.gov/articles/PMC9631946/
Alkaloids:
-Berberine, Worenine, Sinomenine, NK007, Tetrandrine, N-methylhermeanthidine chloride, Dauricine, Oxymatrine, Matrine, Cryptolepine

Flavonoids: -Oroxyline A, Apigenin, Kaempferol, Quercetin, Wogonin, Baicalein, Chrysin, Genistein, Cardamonin, Phloretin, Morusin, Bavachinin, 4-O-methylalpinumisofavone, Glabridin, Icaritin, LicA, Naringin, IVT, Proanthocyanidin B2, Scutellarin, Hesperidin, Silibinin, Catechin, EGCG, EGC, Xanthohumol.

Non-flavonoid phenolic compounds:
Curcumin, Resveratrol, Gossypol, Tannic acid.

Terpenoids:
-Cantharidin, Dihydroartemisinin, Oleanolic acid, Jolkinolide B, Cynaropicrin, Ursolic Acid, Triptolie, Oridonin, Micheliolide, Betulinic Acid, Beta-escin, Limonin, Bruceine D, Prosapogenin A (PSA), Oleuropein, Dioscin.

Quinones:
-Thymoquinone, Lapachoi, Tan IIA, Emodine, Rhein, Shikonin, Hypericin

Others:
-Perillyl alcohol, HCA, Melatonin, Sulforaphane, Vitamin D3, Mycoepoxydiene, Methyl jasmonate, CK, Phsyciosporin, Gliotoxin, Graviola, Ginsenoside, Beta-Carotene.


Scientific Papers found: Click to Expand⟱
1001- SIL,    Silibinin down-regulates PD-L1 expression in nasopharyngeal carcinoma by interfering with tumor cell glycolytic metabolism
- in-vitro, NA, NA
TumCG↓,
Glycolysis↓, Silibinin potently inhibits tumor growth and promotes a shift from aerobic glycolysis toward oxidative phosphorylation.
OXPHOS↑,
LDHA↓,
lactateProd↓,
i-citrate↑,
Hif1a↓,
PD-L1↓, silibinin can alter PD-L1 expression by interfering with HIF-1α/LDH-A

1140- SIL,    Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth
- in-vitro, PC, AsPC-1 - in-vivo, PC, NA - in-vitro, PC, MIA PaCa-2 - in-vitro, PC, PANC1 - in-vitro, PC, Bxpc-3
TumCG↓,
Glycolysis↓,
cMyc↓,
STAT3↓,
TumCP↓,
Weight∅, prevents the loss of body weight and muscle.
Strength↑,
DNAdam↑,
Casp3↑,
Casp9↑,
GLUT1↓,
HK2↓,
LDHA↓,
GlucoseCon↓, silibinin inhibits glucose uptake and lactate release
lactateProd↓,
PPP↓, significant reduction in pentose phosphate pathway (PPP) metabolites, including 6-phosphogluconate (~50%), erythrose-4-phosphate (~40%), sedoheptulose-7-phosphate and sedoheptulose bis-phosphate (~ 70%)
Ki-67↓, reduced Ki67-positive cells
p‑STAT3↓,
cachexia↓,

2410- SIL,    Autophagy activated by silibinin contributes to glioma cell death via induction of oxidative stress-mediated BNIP3-dependent nuclear translocation of AIF
- in-vitro, GBM, U87MG - in-vitro, GBM, U251 - in-vivo, NA, NA
TumAuto↑, Mechanistically, silibinin activates autophagy through depleting ATP by suppressing glycolysis.
ATP↓,
Glycolysis↓, Silibinin suppressed glycolysis in glioma cells
H2O2↑, Then, autophagy improves intracellular H2O2 via promoting p53-mediated depletion of GSH and cysteine and downregulation of xCT
P53↑,
GSH↓,
xCT↓,
BNIP3↝, The increased H2O2 promotes silibinin-induced BNIP3 upregulation and translocation to mitochondria
MMP↑, silibinin-induced mitochondrial depolarization, accumulation of mitochondrial superoxide
mt-ROS↑,
mtDam↑, Autophagy contributed to silibinin-induced mitochondria damage
HK2↓, protein levels of HK II, PFKP, and PKM2 were all downregulated time-dependently by silibinin in U87, U251, SHG-44, and C6 glioma cells
PFKP↓,
PKM2↓, silibinin suppressed glycolysis via downregulation of HK II, PFKP, and PKM2.
TumCG↓, Silibinin inhibited glioma cell growth in vivo


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
ATP↓,1,   BNIP3↝,1,   cachexia↓,1,   Casp3↑,1,   Casp9↑,1,   i-citrate↑,1,   cMyc↓,1,   DNAdam↑,1,   GlucoseCon↓,1,   GLUT1↓,1,   Glycolysis↓,3,   GSH↓,1,   H2O2↑,1,   Hif1a↓,1,   HK2↓,2,   Ki-67↓,1,   lactateProd↓,2,   LDHA↓,2,   MMP↑,1,   mtDam↑,1,   OXPHOS↑,1,   P53↑,1,   PD-L1↓,1,   PFKP↓,1,   PKM2↓,1,   PPP↓,1,   mt-ROS↑,1,   STAT3↓,1,   p‑STAT3↓,1,   Strength↑,1,   TumAuto↑,1,   TumCG↓,3,   TumCP↓,1,   Weight∅,1,   xCT↓,1,  
Total Targets: 35

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: Glycolysis, Glycolysis
3 Silymarin (Milk Thistle) silibinin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:154  Target#:129  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page