condition found tbRes List
PBG, Propolis -bee glue: Click to Expand ⟱
Features: Compound
Brazilian Green Propolis often considered best
• Derived from Baccharis dracunulifolia, this type is rich in artepillin C.
• It has been widely researched for its anticancer, anti-inflammatory, and antioxidant properties.
-Propolis common researched flavonoids :chrysin, pinocembrin, galangin, pinobanksin(Pinocembrin)
-most representative phenolic acids were caffeic acid, p-coumaric acid, and ferulic acid, as well as their derivatives, DMCA and caffeic acid prenyl, benzyl, phenylethyl (CAPE), and cinnamyl esters
-One of the most studied active compounds of a poplar-type propolis is caffeic acid phenethyl ester (CAPE)
-caffeic acid phenethyl ester (CAPE), galangin, chrysin, nemorosone, propolin G, artepillin C, cardanol, pinocembrin, pinobanksin, chicoric acid, and phenolic acids (caffeic acid, ferulic acid, and coumaric acid), as well as luteolin, apigenin, myricetin, naringenin, kaempferol, quercetin, polysaccharides, tannins, terpenes, sterols, and aldehydes -content highly variable based on location and extraction
Two main factors of interest:
1. affects interstitual fluild pH
2. high concentration raises ROS (Reactive Oxygen Species), while low concentration may reduce ROS

- Artepillin-C (major phenolic compounds found in Brazilian green propolis (BGP))
- caffeic acid major source

Do not combine with 2DG

Pathways:
-Propolis compounds (e.g., artepillin C, caffeic acid phenethyl ester [CAPE]) can trigger apoptosis (programmed cell death) in cancer cells.
-Propolis has been shown to inhibit NF‑κB activation.
-Propolis extracts can cause cell cycle arrest at specific checkpoints (e.g., G0/G1 or G2/M phases).
-Enhance the body’s antitumor immune responses, for example by activating natural killer (NK) cells and modulating cytokine profiles.

-Note half-life no standard, high variablity of content.
BioAv poor water solubility, and low oral bioavailability.
Pathways:
- high concentration may induce ROS production, while low concentrations mya low it. This may apply to both normal and cancer cells. Normal Cells Example. (Also not sure if high level are acheivable in vivo due to bioavailability)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ -->
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓,
- Others: PI3K↓, AKT↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


RadioS, RadioSensitizer: Click to Expand ⟱
Source:
Type:
A radiosensitizer is an agent that makes cancer cells more sensitive to the damaging effects of radiation therapy. By using a radiosensitizer, clinicians aim to enhance the effectiveness of radiation treatment by either increasing the damage incurred by tumor cells or by interfering with the cancer cells’ repair mechanisms. This can potentially allow for lower doses of radiation, reduced side effects, or improved treatment outcomes.
Pathways that help Radiosensitivity: downregulating HIF-1α, increase SIRT1, Txr

List of Natural Products with radiosensitizing properties:
-Curcumin:modulate NF-κB, STAT3 and has been shown in preclinical studies to enhance the effects of radiation by inhibiting cell survival pathways.
-Resveratrol:
-EGCG:
-Quercetin:
-Genistein:
-Parthenolide:

How radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including:
-gold nanoparticles (GNPs),
-gold triethylphosphine cyanide ([Au(SCN) (PEt3)]),
-auranofin, ceria nanoparticles (CONPs),
-curcumin and its derivatives,
-piperlongamide,
-indolequinone derivatives,
-micheliolide,
-motexafin gadolinium, and
-ethane selenide selenidazole derivatives (SeDs)


Scientific Papers found: Click to Expand⟱
1683- PBG,  Rad,    Protective effect of propolis in protecting against radiation-induced oxidative stress in the liver as a distant organ
- in-vivo, Nor, NA
GPx↑, Total enzymatic superoxide scavenging activity (TSSA) and non-enzymatic superoxide scavenging activity (NSSA), glutathione peroxidase (GSH-Px) activities of all groups were statistically significantly higher than rats receiving only-irradiation
SOD↓, (SOD) activity in the IR group was found to be significantly higher than both the sham control group and the propolis control group, but lower than the IR + propolis group.
RadioS↑, indings show that propolis can be a radioprotective agent against ionized radiation damage by increasing antioxidant activity and reducing oxidant stress in liver tissue

1661- PBG,    Propolis: a natural compound with potential as an adjuvant in cancer therapy - a review of signaling pathways
- Review, Var, NA
JNK↓, downregulating pathways involving Jun-N terminal kinase, ERK1/2, Akt and NF-ƘB
ERK↓,
Akt↓,
NF-kB↓,
FAK↓, inhibiting Wtn2 and FAK, and MAPK and PI3K/AKT signaling pathways
MAPK↓,
PI3K↓,
Akt↓,
P21↑, propolis-induced up-regulation of p21 and p27
p27↑,
TRAIL↑, effects of propolis are mediated through upregulation of TRAIL, Bax, p53, and downregulation of the ERK1/2 signaling
BAX↑,
P53↑,
ERK↓,
ChemoSen↑, effective adjuvant therapy aimed at reducing related side effects associated with chemotherapy and radiotherapy
RadioS↑,
Glycolysis↓, Chinese poplar propolis decreased aerobic glycolysis by reducing the levels of crucial enzymes such as phosphofructokinase (PFK), hexokinase 2 (HK2), pyruvate kinase M2 (PKM2), and lactate dehydrogenase A (LDHA)
HK2↓,
PKM2↓,
LDHA↓,
PFK↓,

1662- PBG,    The immunomodulatory and anticancer properties of propolis
- Review, Var, NA
IL6↓, suppressing the proinflammatory cytokines IL-6 and IL-12 but overexpressing the immune-tolerant cytokine IL-10.
IL12↓,
IL10↑,
CSCs↓, Propolis may Decrease Cancer Stem Cells Population
PAK1↓, artepillin C, a major component in Brazilian green propolis extract, can completely suppress the growth of human neurofibromatosis-associated tumor xenografts in mice through the blocking of oncogenic PAK1 signaling
VEGF↓, royal jelly and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration,
MMP2↓, CAPE from propolis could effectively suppress the adhesion and invasion potential of human hepatocellular carcinoma cells (SK-Hep1) by totally abolishing the expression of MMP-2 and MMP-9.
MMP9↓,
NF-kB↓, It was postulated that such action was related to the inhibition of the NFκB pathway
Hif1a↓, Brazilian green propolis and found that some compounds significantly inhibited the expression of the HIF-1α protein and HIF-1 downstream target genes such as glucose transporter 1, hexokinase 2, and VEGF-A
ChemoSen↑, the group with combined usage of paclitaxel and propolis achieved the lowest tumor weight compared to those with paclitaxel alone, propolis alone, or untreated controls
RadioS↑, complementary therapy to mainstream anticancer chemotherapies or radiotherapies.

1664- PBG,    Anticancer Activity of Propolis and Its Compounds
- Review, Var, NA
Apoptosis↑,
TumCMig↓,
TumCCA↑,
TumCP↓,
angioG↓,
P21↑, upregulating p21 and p27 expression
p27↑,
CDK1↓, thanol-extracted Cameroonian propolis increased the amount of DU145 and PC3 cells in G0/G1 phase, down-regulated cell cycle proteins (CDK1, pCDK1, and their related cyclins A and B)
p‑CDK1↓,
cycA1↓,
CycB↓,
P70S6K↓, Caffeic acid phenylethyl ester has been shown to inhibit the S6 beta-1 ribosomal protein kinase (p70S6K),
CLDN2↓, inhibition of NF-κB may be involved in the decrease of claudin-2 mRNA level
HK2↓, Chinese poplar propolis has been shown to significantly reduce the level of glycolysis at the stage of action of hexokinase 2 (HK2), phosphofructokinase (PFK), muscle isozyme pyruvate kinase M2 (PKM2), and lactate dehydrogenase A (LDHA)
PFK↓,
PKM2↓,
LDHA↓,
TLR4↓, hinese propolis, as well as CAPE, inhibits breast cancer cell proliferation in the inflammatory microenvironment by inhibiting the Toll-like receptor 4 (TLR4) signal pathway
H3↓, Brazilian red propolis bioactive isoflavonoid, down-regulates the alpha-tubulin, tubulin in microtubules, and histone H3 genes
α-tubulin↓,
ROS↑, CAPE also affects the apoptotic intrinsic pathway by increasing ROS production
Akt↓, CAPE induces apoptosis by decreasing the levels of proteins related to carcinogenesis, including Akt, GSK3b, FOXO1, FOXO3a, NF-kB, Skp2 and cyclin D1
GSK‐3β↓,
FOXO3↓,
NF-kB↓,
cycD1↓,
MMP↓, It was found that chrysin caused a loss of mitochondria membrane potential (MMP) while increasing the production of reactive oxygen species (ROS), cytoplasmic Ca2+ levels, and lipid peroxidation
ROS↑,
i-Ca+2↑,
lipid-P↑,
ER Stress↑, Chrysin also induced endoplasmic reticulum (ER) stress by activating unfolded protein response proteins (UPR) such as PRKR-like ER kinase (PERK), eukaryotic translation initiation factor 2α (eIF2α), and 78 kDa glucose-regulated protein (GRP78)
UPR↑,
PERK↑,
eIF2α↑,
GRP78/BiP↑,
BAX↑, CAPE activated Bax protein
PUMA↑, CAPE also significantly increased PUMA expression
ROS↑, Northeast China causes cell apoptosis in human gastric cancer cells with increased production of reactive oxygen species (ROS) and reduced mitochondrial membrane potential.
MMP↓,
Cyt‑c↑, release of cytochrome C from mitochondria to the cytoplasm is observed, as well as the activation of cleaved caspases (8, 9, and 3) and PARP
cl‑Casp8↑,
cl‑Casp8↑,
cl‑Casp3↑,
cl‑PARP↑,
eff↑, administration of Iranian propolis extract in combination with 5-fluorouracil (5-FU) significantly reduced the number of azaxymethane-induced aberrant crypt foci compared to 5-FU or propolis alone.
eff↑, Propolis may also have a positive effect on the efficacy of photodynamic therapy (PDT). enhances the intracellular accumulation of protoporphyrin IX (PpIX) in human epidermoid carcinoma cells
RadioS↑, breast cancer patients undergoing radiotherapy and supplemented with propolis had a statistically significant longer median disease-free survival time than the control group
ChemoSen↑, confirmed that propolis mouthwash is effective and safe in the treatment of chemo- or radiotherapy-induced oral mucositis in cancer patients.
eff↑, Quercetin, ferulic acid, and CAPE may also influence the MDR of cancer cells by inhibiting P-gp expression

1666- PBG,    Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer
- Review, Var, NA
ChemoSen↑, Ingredients from propolis also ”sensitize“ cancer cells to chemotherapeutic agents
TumCCA↑, cell-cycle arrest and attenuation of cancer cells proliferation
TumCP↓,
Apoptosis↑,
antiOx↓, behave as antioxidants against peroxyl and hydroxyl radicals,
ROS↑, whereas prooxidant activity is observed in the presence of Cu2+.
COX2↑, Propolis, as well as flavonoids derived from propolis, such as galangin, is a potent COX-2 inhibitor
ER(estro)↓, Some flavonoids from propolis, such as galangin, genistein, baicalein, hesperetin, naringenin, and quercetin, suppressed the proliferation of an estrogen receptor (ER)
cycA1↓, by suppressing expressions of cyclin A, cyclin B, and Cdk2 and by stopping proliferation at the G2 phase, by increasing levels of p21 and p27 proteins, and through the inhibition of telomerase reverse transcriptase (hTERT),
CycB↓,
CDK2↓,
P21↑,
p27↑,
hTERT↓, leukemia cells, propolis successfully reduced hTERT mRNA expression
HDAC↓, by suppressing expressions of cyclin A, cyclin B, and Cdk2 and by stopping proliferation at the G2 phase, by increasing levels of p21 and p27 proteins, and through the inhibition of telomerase reverse transcriptase (hTERT),
ROS⇅, Mexican propolis, demonstrated both pro- and anti-inflammatory effects, depending on the dose applied
Dose?, Mexican propolis, demonstrated both pro- and anti-inflammatory effects, depending on the dose applied
ROS↓, By scavenging free radicals, chelating metal ions (mainly iron and copper), and stimulating endogenous antioxidant defenses, propolis and its flavonoids directly attenuate the generation of ROS
ROS↑, Romanian propolis [99], exhibits prooxidant properties at high concentrations, by mobilizing endogenous copper ions and DNA-associated copper in cells.
DNAdam↑, propolis, i.e., its polyphenolic components, may induce DNA damage in the presence of transition metal ions.
ChemoSen↑, Algerian propolis + doxorubicin decreased cell viability, prevented cell proliferation and cell cycle progression, induced apoptosis by activating caspase-3 and -9 activities, and increased the accumulation of chemotherapeutic drugs in MDA-MB-231 cel
LOX1↓, propolis components inhibited the LOX pathway
lipid-P↓, Croatian propolis improved psoriatic-like skin lesions induced by irritant agents n-hexyl salicylate or di-n-propyl disulfide by decreasing the extent of lipid peroxidation
NO↑, Taken together, propolis may increase the phagocytic index, NO production, and production of IgG antibodies
Igs↑,
NK cell↑, propolis treatment for 3 days increases the cytotoxic activity of NK cells against murine lymphoma.
MMPs↓, extracts of propolis containing artepillin C and CAPE decreased the formation of new vessels and expression of MMPs and VEGF in various cancer cells
VEGF↓,
Hif1a↓, Brazilian green propolis inhibit the expression of the hypoxia-inducible factor-1 (HIF-1) protein and HIF-1 downstream targets such as glucose transporter 1, hexokinase 2, and VEGF-A
GLUT1↓,
HK2↓,
selectivity↑, Portuguese propolis was selectively toxic against malignant cells.
RadioS↑, propolis increased the lifespan of mice that received the radiotherapy with gamma rays
GlucoseCon↓, Portuguese propolis disturbed the glycolytic metabolism of human colorectal cancer cells, as evidenced by a decrease in glucose consumption and lactate production
lactateProd↓,
eff↓, Furthermore, different pesticides or heavy metals can be found in propolis, which can cause unwanted side effects.
*BioAv↓, Due to the low bioavailability and clinical efficacy of propolis and its flavonoids, their biomedical applications remain limited.

1672- PBG,    The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers
- Review, BC, NA
ChemoSen↓, 4 human clinical trials that demonstrated the successful use of propolis in alleviating side effects of chemotherapy and radiotherapy while increasing the quality of life of breast cancer patients, with minimal adverse effects.
RadioS↑,
Inflam↓, immunomodulatory, anti-inflammatory, and anti-cancer properties.
AntiCan↑,
Dose∅, Indonesia: IC50 = 4.57 μg/mL and 10.23 μg/mL
mtDam↑, Poland: propolis induced mitochondrial damage and subsequent apoptosis in breast cancer cells.
Apoptosis?,
OCR↓, China: CAPE inhibited mitochondrial oxygen consumption rate (OCR) by reducing basal, maximal, and spare respiration rate and consequently inhibiting ATP production
ATP↓,
ROS↑, Iran: inducing intracellular ROS production, IC50 = 65-96 μg/mL
ROS↑, Propolis induced mitochondrial dysfunction and lactate dehydrogenase release indicating the occurrence of ROS-associated necrosis.
LDH↓,
TP53↓, Interestingly, a reduced expression of apoptosis-related genes such as TP53, CASP3, BAX, and P21)
Casp3↓,
BAX↓,
P21↓,
ROS↑, CAPE: inducing oxidative stress through upregulation of e-NOS and i-NOS levels
eNOS↑,
iNOS↑,
eff↑, The combination of propolis and mangostin significantly reduced the expression of Wnt2, FAK, and HIF-1α, when compared to propolis or mangostin alone
hTERT↓, downregulation of the mRNA levels of hTERT and cyclin D1
cycD1↓,
eff↑, Synergism with bee venom was observed
eff↑, Statistically significant decrease was found in the MCF-7 cell viability 48 h after applying different combinations of cisplatin (3.12 μg/mL) and curcumin (0.31 μg/mL) and propolis (160 μg/mL)
eff↑, Nanoparticles of chrysin had significantly higher cytotoxicity against MCF-7 cells, compared to chrysin
eff↑, Propolis nanoparticles appeared to increase cytotoxicity of propolis against MCF-7 cells
STAT3↓, Chrysin also inhibited the hypoxia-induced STAT3 tyrosine phosphorylation suggesting the mechanism of action was through STAT3 inhibition.
TIMP1↓, Propolis reduced the expression of TIMP-1, IL-4, and IL-10.
IL4↓,
IL10↓,
OS↑, patients supplemented with propolis had significantly longer median disease free survival time (400 mg, 3 times daily for 10 d pre-, during, and post)
Dose∅, 400 mg, 3 times daily for 10 d pre-, during, and post
ER Stress↑, endoplasmic reticulum stress
ROS↑, upregulating the expression of Annexin A7 (ANXA7), reactive oxygen species (ROS) level, and NF-κB p65 level, while simultaneously reducing the mitochondrial membrane potential.
NF-kB↓,
p65↓,
MMP↓,
TumAuto↑, propolis induced autophagy by increasing the expression of LC3-II and reducing the expression of p62 level
LC3II↑,
p62↓,
TLR4↓, propolis downregulates the inflammatory TLR4
mtDam↑, propolis induced mitochondrial dysfunction and lactate dehydrogenase release indicating ROS-associated necrosis in MDA MB-231cancer cells
LDH↓,
ROS↑,
Glycolysis↓, inhibit the proliferation of MDA-MB-231 cells by targeting key enzymes of glycolysis, namely glycolysis-hexokinase 2 (HK2), phosphofructokinase (PFK), pyruvate kinase muscle isozyme M2 (PKM2), and lactate dehydrogenase A (LDHA),
HK2↓,
PFK↓,
PKM2↓,
LDH↓,
IL10↓, propolis significantly reduced the relative number of CD4+, CD25+, FoxP3+ regulatory T cells expressing IL-10
HDAC8↓, Chrysin, a propolis bioactive compound, inhibits HDAC8
eff↑, combination of propolis and mangostin significantly reduced the expression of Wnt2, FAK, and HIF-1α, when compared to propolis or mangostin alone.
eff↑, Propolis also upregulated the expression of catalase, HTRA2/Omi, FADD, and TRAIL-associated DR5 and DR4 which significantly enhanced the cytotoxicity of doxorubicin in MCF-7 cells
P21↑, Chrysin, a propolis bioactive compound, inhibits HDAC8 and significantly increases the expression of p21 (waf1/cip1) in breast cancer cells, leading to apoptosis.

1673- PBG,    An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms
- Review, Var, NA
TumCP↓, propolis-treated cells showed inhibition of cell proliferation and induction of apoptosis
Apoptosis↑,
TumCCA↑, cell cycle arrest potential against cancer cell lines
MALAT1↓, CAPE blocks the expression of the MALT1 gene to decrease the cell proliferation, invasion, and tumor growth of prostate carcinoma cells via the p53 and NF-κB signaling pathways
P53↑,
RadioS↑, Propolis capsules (400 mg, 3 times daily) is consumed for 10 days before radiotherapy, 10 days during radiation treatment, and 10 days after irradiation
OS↑, Patients who used propolis supplements had a considerably longer median disease-free lifetime.
ROS↑, Chinese propolis extract (EECP) significantly increased annexin A7 expression, ROS, NF-κB, and p65 expressions and dramatically altered the potential of mitochondrial membrane
NF-kB↓, Chrysin treatment in U937 cells (histiocytic lymphoma cells) showed induction of apoptosis by suppressing the PI3K/Akt signaling and inactivation of nuclear factor kappa B (NF-?B)/inhibitor of apoptosis (IAP)
p65↑,
MMP↓,
ROS↑, 25 to 100 μg/ml of Chinese propolis-treated cells showed increased ROS generation
MMP9↓, Cuban propolis (83 μg/ml) suppresses cell migration and invasion by inhibiting MMP-9 activity, β-catenin, vimentin expression, and decreased E-cadherin expression in human colorectal cancer
β-catenin/ZEB1↓,
Vim↓,
E-cadherin↓,
VEGF↓, Chinese red propolis and CAPE displayed a solid inhibitory effect in VEGF-mediated angiogenesis
EMT↓, Chinese propolis (12.5 μg/ml) inhibited Panc-1 cell migration by modulating the epithelial-mesenchymal transition


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
Akt↓,3,   angioG↓,1,   AntiCan↑,1,   antiOx↓,1,   Apoptosis?,1,   Apoptosis↑,3,   ATP↓,1,   BAX↓,1,   BAX↑,2,   i-Ca+2↑,1,   Casp3↓,1,   cl‑Casp3↑,1,   cl‑Casp8↑,2,   CDK1↓,1,   p‑CDK1↓,1,   CDK2↓,1,   ChemoSen↓,1,   ChemoSen↑,5,   CLDN2↓,1,   COX2↑,1,   CSCs↓,1,   cycA1↓,2,   CycB↓,2,   cycD1↓,2,   Cyt‑c↑,1,   DNAdam↑,1,   Dose?,1,   Dose∅,2,   E-cadherin↓,1,   eff↓,1,   eff↑,10,   eIF2α↑,1,   EMT↓,1,   eNOS↑,1,   ER Stress↑,2,   ER(estro)↓,1,   ERK↓,2,   FAK↓,1,   FOXO3↓,1,   GlucoseCon↓,1,   GLUT1↓,1,   Glycolysis↓,2,   GPx↑,1,   GRP78/BiP↑,1,   GSK‐3β↓,1,   H3↓,1,   HDAC↓,1,   HDAC8↓,1,   Hif1a↓,2,   HK2↓,4,   hTERT↓,2,   Igs↑,1,   IL10↓,2,   IL10↑,1,   IL12↓,1,   IL4↓,1,   IL6↓,1,   Inflam↓,1,   iNOS↑,1,   JNK↓,1,   lactateProd↓,1,   LC3II↑,1,   LDH↓,3,   LDHA↓,2,   lipid-P↓,1,   lipid-P↑,1,   LOX1↓,1,   MALAT1↓,1,   MAPK↓,1,   MMP↓,4,   MMP2↓,1,   MMP9↓,2,   MMPs↓,1,   mtDam↑,2,   NF-kB↓,5,   NK cell↑,1,   NO↑,1,   OCR↓,1,   OS↑,2,   P21↓,1,   P21↑,4,   p27↑,3,   P53↑,2,   p62↓,1,   p65↓,1,   p65↑,1,   P70S6K↓,1,   PAK1↓,1,   cl‑PARP↑,1,   PERK↑,1,   PFK↓,3,   PI3K↓,1,   PKM2↓,3,   PUMA↑,1,   RadioS↑,7,   ROS↓,1,   ROS↑,12,   ROS⇅,1,   selectivity↑,1,   SOD↓,1,   STAT3↓,1,   TIMP1↓,1,   TLR4↓,2,   TP53↓,1,   TRAIL↑,1,   TumAuto↑,1,   TumCCA↑,3,   TumCMig↓,1,   TumCP↓,3,   UPR↑,1,   VEGF↓,3,   Vim↓,1,   α-tubulin↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 114

Results for Effect on Normal Cells:
BioAv↓,1,  
Total Targets: 1

Scientific Paper Hit Count for: RadioS, RadioSensitizer
7 Propolis -bee glue
1 Radiotherapy/Radiation
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:137  Target#:1107  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page