condition found
Features: Compound |
Brazilian Green Propolis often considered best • Derived from Baccharis dracunulifolia, this type is rich in artepillin C. • It has been widely researched for its anticancer, anti-inflammatory, and antioxidant properties. -Propolis common researched flavonoids :chrysin, pinocembrin, galangin, pinobanksin(Pinocembrin) -most representative phenolic acids were caffeic acid, p-coumaric acid, and ferulic acid, as well as their derivatives, DMCA and caffeic acid prenyl, benzyl, phenylethyl (CAPE), and cinnamyl esters -One of the most studied active compounds of a poplar-type propolis is caffeic acid phenethyl ester (CAPE) -caffeic acid phenethyl ester (CAPE), galangin, chrysin, nemorosone, propolin G, artepillin C, cardanol, pinocembrin, pinobanksin, chicoric acid, and phenolic acids (caffeic acid, ferulic acid, and coumaric acid), as well as luteolin, apigenin, myricetin, naringenin, kaempferol, quercetin, polysaccharides, tannins, terpenes, sterols, and aldehydes -content highly variable based on location and extraction Two main factors of interest: 1. affects interstitual fluild pH 2. high concentration raises ROS (Reactive Oxygen Species), while low concentration may reduce ROS - Artepillin-C (major phenolic compounds found in Brazilian green propolis (BGP)) - caffeic acid major source Do not combine with 2DG Pathways: -Propolis compounds (e.g., artepillin C, caffeic acid phenethyl ester [CAPE]) can trigger apoptosis (programmed cell death) in cancer cells. -Propolis has been shown to inhibit NF‑κB activation. -Propolis extracts can cause cell cycle arrest at specific checkpoints (e.g., G0/G1 or G2/M phases). -Enhance the body’s antitumor immune responses, for example by activating natural killer (NK) cells and modulating cytokine profiles. -Note half-life no standard, high variablity of content. BioAv poor water solubility, and low oral bioavailability. Pathways: - high concentration may induce ROS production, while low concentrations mya low it. This may apply to both normal and cancer cells. Normal Cells Example. (Also not sure if high level are acheivable in vivo due to bioavailability) - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ --> - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, - Others: PI3K↓, AKT↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Poly (ADP-ribose) polymerase (PARP) cleavage is a hallmark of caspase activation.
PARP (Poly (ADP-ribose) polymerase) is a family of proteins involved in a variety of cellular processes, including DNA repair, genomic stability, and programmed cell death. PARP enzymes play a crucial role in repairing single-strand breaks in DNA. PARP has gained significant attention, particularly in the treatment of certain types of tumors, such as those with BRCA1 or BRCA2 mutations. These mutations impair the cell's ability to repair double-strand breaks in DNA through homologous recombination. Cancer cells with these mutations can become reliant on PARP for survival, making them particularly sensitive to PARP inhibitors. PARP inhibitors, such as olaparib, rucaparib, and niraparib, have been developed as targeted therapies for cancers associated with BRCA mutations. PARP Family: The poly (ADP-ribose) polymerases (PARPs) are a family of enzymes involved in a number of cellular processes, including DNA repair, genomic stability, and programmed cell death. PARP1 is the predominant family member responsible for detecting DNA strand breaks and initiating repair processes, especially through base excision repair (BER). PARP1 Overexpression: In several cancer types—including breast, ovarian, prostate, and lung cancers—elevated PARP1 expression and/or activity has been reported. High PARP1 expression in certain cancers has been associated with aggressive tumor behavior and resistance to therapies (especially those that induce DNA damage). Increased PARP1 activity may correlate with poorer overall survival in tumors that rely on DNA repair for survival. |
1682- | PBG,  |   | Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits |
- | Review, | Var, | NA |
1664- | PBG,  |   | Anticancer Activity of Propolis and Its Compounds |
- | Review, | Var, | NA |
1674- | PBG,  | SDT,  | HPT,  |   | Study on the effect of a triple cancer treatment of propolis, thermal cycling-hyperthermia, and low-intensity ultrasound on PANC-1 cells |
- | in-vitro, | PC, | PANC1 | - | in-vitro, | Nor, | H6c7 |
1676- | PBG,  |   | Use of Stingless Bee Propolis and Geopropolis against Cancer—A Literature Review of Preclinical Studies |
- | Review, | Var, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:137 Target#:239 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid