condition found tbRes List
PBG, Propolis -bee glue: Click to Expand ⟱
Features: Compound
Brazilian Green Propolis often considered best
• Derived from Baccharis dracunulifolia, this type is rich in artepillin C.
• It has been widely researched for its anticancer, anti-inflammatory, and antioxidant properties.
-Propolis common researched flavonoids :chrysin, pinocembrin, galangin, pinobanksin(Pinocembrin)
-most representative phenolic acids were caffeic acid, p-coumaric acid, and ferulic acid, as well as their derivatives, DMCA and caffeic acid prenyl, benzyl, phenylethyl (CAPE), and cinnamyl esters
-One of the most studied active compounds of a poplar-type propolis is caffeic acid phenethyl ester (CAPE)
-caffeic acid phenethyl ester (CAPE), galangin, chrysin, nemorosone, propolin G, artepillin C, cardanol, pinocembrin, pinobanksin, chicoric acid, and phenolic acids (caffeic acid, ferulic acid, and coumaric acid), as well as luteolin, apigenin, myricetin, naringenin, kaempferol, quercetin, polysaccharides, tannins, terpenes, sterols, and aldehydes -content highly variable based on location and extraction
Two main factors of interest:
1. affects interstitual fluild pH
2. high concentration raises ROS (Reactive Oxygen Species), while low concentration may reduce ROS

- Artepillin-C (major phenolic compounds found in Brazilian green propolis (BGP))
- caffeic acid major source

Do not combine with 2DG

Pathways:
-Propolis compounds (e.g., artepillin C, caffeic acid phenethyl ester [CAPE]) can trigger apoptosis (programmed cell death) in cancer cells.
-Propolis has been shown to inhibit NF‑κB activation.
-Propolis extracts can cause cell cycle arrest at specific checkpoints (e.g., G0/G1 or G2/M phases).
-Enhance the body’s antitumor immune responses, for example by activating natural killer (NK) cells and modulating cytokine profiles.

-Note half-life no standard, high variablity of content.
BioAv poor water solubility, and low oral bioavailability.
Pathways:
- high concentration may induce ROS production, while low concentrations mya low it. This may apply to both normal and cancer cells. Normal Cells Example. (Also not sure if high level are acheivable in vivo due to bioavailability)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ -->
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓,
- Others: PI3K↓, AKT↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


α-SMA, α-smooth muscle actin: Click to Expand ⟱
Source:
Type: protein
α-smooth muscle actin (α-SMA) is a protein that is often associated with cancer progression. It is a key component of the actin cytoskeleton and plays a crucial role in cell migration, invasion, and contraction.
α-SMA is often expressed by cancer-associated fibroblasts (CAFs), which are a type of stromal cell that surrounds the tumor. CAFs expressing α-SMA can promote tumor growth and metastasis.
High levels of α-SMA expression have been correlated with poor prognosis in various types of cancer, including breast, lung, and colorectal cancer.


Scientific Papers found: Click to Expand⟱
3250- PBG,    Allergic Inflammation: Effect of Propolis and Its Flavonoids
- Review, NA, NA
*SOD↑, increase in antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, catalase, peroxiredoxin, and heme oxygenase-1
*GPx↑,
*Catalase↑,
*Prx↑,
*HO-1↑,
*Inflam↓, anti-inflammatory properties of propolis may be based on the following mechanisms:
*TNF-α↓, (1) suppression of the release of inflammatory cytokines, such as TNF-α and IL-1β;
*IL1β↓,
*IL4↑, (2) increase in production of anti-inflammatory cytokines such as IL-4 and IL-10;
*IL10↑,
*TLR4↓, (3) prevention of TLR4 activation;
*LOX1↓, (4) suppression of LOX, COX-1 and COX-2 gene expression
*COX1↓,
*COX2↓,
*NF-kB↓, (5) suppression of NF-κB and AP-1 activities;
*AP-1↓,
*ROS↓, CAPE treatment reduced ROS levels in the airway microenvironmen
*GSH↑, GSH level increased after CAPE treatment in an animal allergic asthma model
*TGF-β↓, significantly limiting secretion of eotaxin-1, TGF-β1, TNF-α, IL-4, IL-13, monocyte chemoattractant protein-1, IL-8, matrix metalloproteinase-9, and alpha-smooth muscle actin expression
*IL8↓,
*MMP9↓,
*α-SMA↓,
*MDA↓, (MDA) production and protein carbonyl (PC) levels significantly decreased

3257- PBG,    The Potential Use of Propolis as a Primary or an Adjunctive Therapy in Respiratory Tract-Related Diseases and Disorders: A Systematic Scoping Review
- Review, Var, NA
CDK4↓, CAPE also induces G1 phase cell arrest by lowering the expression of CDK4, CDK6, Rb, and p-Rb. M
CDK6↓,
pRB↓,
ROS↓, Artepillin C, a bioactive component of Brazilian green propolis, reduces oxidative damage markers, namely 4-HNE-modified proteins, 8-OHdG, malonaldehyde, and thiobarbituric acid reactive substances in lung tissues with pulmonary adenocarcinoma
TumCCA↑, Propolin, a novel component of prenylflavanones in Taiwanese propolis, was demonstrated to have anti-cancer properties. Propolin H induces cell arrest at G1 phase and upregulates the expression of p21
P21↑,
PI3K↓, Propolin C also inhibits PI3K/Akt and ERK-mediated epithelial-to-mesenchymal transition by upregulating E-cadherin (epithelial cell marker) and downregulating vimentin
Akt↓,
EMT↓,
E-cadherin↑,
Vim↓,
*COX2↓, bioactive compounds such as CAPE, galangin significantly reduce the activity of lung cyclooxygenase (COX) and myeloperoxidase (MPO), and malonaldehyde (MDA), TNF-α, and IL-6 levels, while increasing the activity of catalase (CAT) and SOD
*MPO↓,
*MDA↓,
*TNF-α↓,
*IL6↓,
*Catalase↑,
*SOD↑,
*AST↓, Chrysin also reduces the expression of oxidative and inflammatory markers such as aspartate transaminase (AST), alanine aminotransferase (ALT), IL-1β, IL-10, TNF-α, and MDA levels and increases the antioxidant parameters such as SOD, CAT, and GPx
*ALAT↓,
*IL1β↓,
*IL10↓,
*GPx↓,
*TLR4↓, propolis also inhibits the expression of Toll-like receptor 4 (TLR4), macrophage infiltration, MPO activity, and apoptosis of lung tissues in septic animals
*Sepsis↓,
*IFN-γ↑, CAPE also significantly increases IFN-γ
*GSH↑, propolis significantly increased the level of GSH and the histological appearances of propolis-treated bleomycin-induced pulmonary fibrosis rats.
*NRF2↑, CAPE significantly increases the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2)
*α-SMA↓, propolis significantly inhibits the expression of α- SMA, collagen fibers, and TGF-1β.
*TGF-β↓,
*IL5↓, Propolis also inhibits the expression of inflammatory cytokines and chemokines such as TNF-α, IL-5, IL-6, IL-8, IL-10, NF-kB, IFN-γ, PGF2a, and PGE2.
*IL6↓,
*IL8↓,
*PGE2↓,
*NF-kB↓,
*MMP9↓, downregulating the expression of TGF-1β, ICAM-1, α-SMA, MMP-9, IgE, and IgG1.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   CDK4↓,1,   CDK6↓,1,   E-cadherin↑,1,   EMT↓,1,   P21↑,1,   PI3K↓,1,   pRB↓,1,   ROS↓,1,   TumCCA↑,1,   Vim↓,1,  
Total Targets: 11

Results for Effect on Normal Cells:
ALAT↓,1,   AP-1↓,1,   AST↓,1,   Catalase↑,2,   COX1↓,1,   COX2↓,2,   GPx↓,1,   GPx↑,1,   GSH↑,2,   HO-1↑,1,   IFN-γ↑,1,   IL10↓,1,   IL10↑,1,   IL1β↓,2,   IL4↑,1,   IL5↓,1,   IL6↓,2,   IL8↓,2,   Inflam↓,1,   LOX1↓,1,   MDA↓,2,   MMP9↓,2,   MPO↓,1,   NF-kB↓,2,   NRF2↑,1,   PGE2↓,1,   Prx↑,1,   ROS↓,1,   Sepsis↓,1,   SOD↑,2,   TGF-β↓,2,   TLR4↓,2,   TNF-α↓,2,   α-SMA↓,2,  
Total Targets: 34

Scientific Paper Hit Count for: α-SMA, α-smooth muscle actin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:137  Target#:719  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page