condition found tbRes List
PBG, Propolis -bee glue: Click to Expand ⟱
Features: Compound
Brazilian Green Propolis often considered best
• Derived from Baccharis dracunulifolia, this type is rich in artepillin C.
• It has been widely researched for its anticancer, anti-inflammatory, and antioxidant properties.
-Propolis common researched flavonoids :chrysin, pinocembrin, galangin, pinobanksin(Pinocembrin)
-most representative phenolic acids were caffeic acid, p-coumaric acid, and ferulic acid, as well as their derivatives, DMCA and caffeic acid prenyl, benzyl, phenylethyl (CAPE), and cinnamyl esters
-One of the most studied active compounds of a poplar-type propolis is caffeic acid phenethyl ester (CAPE)
-caffeic acid phenethyl ester (CAPE), galangin, chrysin, nemorosone, propolin G, artepillin C, cardanol, pinocembrin, pinobanksin, chicoric acid, and phenolic acids (caffeic acid, ferulic acid, and coumaric acid), as well as luteolin, apigenin, myricetin, naringenin, kaempferol, quercetin, polysaccharides, tannins, terpenes, sterols, and aldehydes -content highly variable based on location and extraction
Two main factors of interest:
1. affects interstitual fluild pH
2. high concentration raises ROS (Reactive Oxygen Species), while low concentration may reduce ROS

- Artepillin-C (major phenolic compounds found in Brazilian green propolis (BGP))
- caffeic acid major source

Do not combine with 2DG

Pathways:
-Propolis compounds (e.g., artepillin C, caffeic acid phenethyl ester [CAPE]) can trigger apoptosis (programmed cell death) in cancer cells.
-Propolis has been shown to inhibit NF‑κB activation.
-Propolis extracts can cause cell cycle arrest at specific checkpoints (e.g., G0/G1 or G2/M phases).
-Enhance the body’s antitumor immune responses, for example by activating natural killer (NK) cells and modulating cytokine profiles.

-Note half-life no standard, high variablity of content.
BioAv poor water solubility, and low oral bioavailability.
Pathways:
- high concentration may induce ROS production, while low concentrations mya low it. This may apply to both normal and cancer cells. Normal Cells Example. (Also not sure if high level are acheivable in vivo due to bioavailability)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ -->
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓,
- Others: PI3K↓, AKT↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Cyt‑c, cyt-c Release into Cytosol: Click to Expand ⟱
Source:
Type:
Cytochrome c
** The term "release of cytochrome c" ** an increase in level for the cytosol.
Small hemeprotein found loosely associated with the inner membrane of the mitochondrion where it plays a critical role in cellular respiration. Cytochrome c is highly water-soluble, unlike other cytochromes. It is capable of undergoing oxidation and reduction as its iron atom converts between the ferrous and ferric forms, but does not bind oxygen. It also plays a major role in cell apoptosis.

The term "release of cytochrome c" refers to a critical step in the process of programmed cell death, also known as apoptosis.
In its new location—the cytosol—cytochrome c participates in the apoptotic signaling pathway by helping to form the apoptosome, which activates caspases that execute cell death.
Cytochrome c is a small protein normally located in the mitochondrial intermembrane space. Its primary role in healthy cells is to participate in the electron transport chain, a process that helps produce energy (ATP) through oxidative phosphorylation.
Mitochondrial outer membrane permeability leads to the release of cytochrome c from the mitochondria into the cytosol.
The release of cytochrome c is a pivotal event in apoptosis where cytochrome c moves from the mitochondria to the cytosol, initiating a chain reaction that leads to programmed cell death.

On the one hand, cytochrome c can promote cancer cell survival and proliferation by regulating the activity of various signaling pathways, such as the PI3K/AKT pathway. This can lead to increased cell growth and resistance to apoptosis, which are hallmarks of cancer.
On the other hand, cytochrome c can also induce apoptosis in cancer cells by interacting with other proteins, such as Apaf-1 and caspase-9. This can lead to the activation of the intrinsic apoptotic pathway, which can result in the death of cancer cells.
Overexpressed in Breast, Lung, Colon, and Prostrate.
Underexpressed in Ovarian, and Pancreatic.


Scientific Papers found: Click to Expand⟱
1682- PBG,    Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits
- Review, Var, NA
i-LDH↓, cytotoxic activities of Tualang honey in human breast cancer cells were demonstrated by elevated secretion of lactate dehydrogenase (LDH)
Akt↓, figure 2
MAPK↓, figure 2
NF-kB↓, figure 2
IL1β↓, figure 2
IL6↓, figure 2
TNF-α↓, figure 2
iNOS↓, figure 2
COX2↓, figure 2
ROS↓, figure 2
Bcl-2↓, figure 2
PARP↓, figure 2
P53↑, figure 2
BAX↑, figure 2
Casp3↑, figure 2
TumCCA↑, Several components of honey such as chrysin, quercetin, and kaempferol have been shown to arrest cell cycle at various phases such as G0/G1, G1, and G2/M
Cyt‑c↑, hese stimuli cause several proteins located within the intermembrane space (IMS) of the mitochondria, such as cytochrome c, to be released
MMP↓, Honey induces MOMP in cancer cell lines by decreasing the mitochondrial membrane potential
eff↑, amplifying the apoptotic effect of tamoxifen by intensified depolarization of the mitochondrial membrane.

1668- PBG,    Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms
- Review, Var, NA
antiOx↑, Propolis has well-known therapeutic actions including antioxidative, antimicrobial, anti-inflammatory, and anticancer properties.
Inflam↓,
AntiCan↑,
TumCP↓, primarily by inhibiting cancer cell proliferation, inducing apoptosis
Apoptosis↑,
eff↝, Depending on the bee species, geographic location, plant species, and weather conditions, the chemical makeup of propolis fluctuates significantly
MMPs↓, via inhibiting the metastatic protein expression such as MMPs (matrix metalloproteinases)
TNF-α↓, inhibit inflammatory mediators including tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS), cyclooxygenase-1/2 (COX ½), lipoxygenase (LOX), prostaglandins (PGs), and interleukin 1- β (IL1-β)
iNOS↓,
COX2↓,
IL1β↑,
*BioAv↓, Despite the low bioavailability of Artepillin C, a compound with a wide variety of physiological activities
BAX↑, Egyptian propolis extract revealed high apoptotic effects through an increase in BAX (pro-apoptotic protein), caspase-3, and cytochrome-c expression levels, and by a reduction in B-cell lymphoma2 (BCL2)
Casp3↑,
Cyt‑c↑,
Bcl-2↓,
eff↑, enhanced the G0/G1 cell cycle arrest induced by methotrexate
selectivity↑, Thailand propolis on normal and cancerous cells carried out by Umthong et al. found significant differences with the propolis showing cytotoxicity against cancerous but not normal cells.
P53↑, significant increases in the levels of p53 in cells treated with propolis extracts.
ROS↑, propolis induced apoptosis in the SW620 human colorectal cancer cell line through mitochondrial dysfunction caused by high production of reactive oxygen species (ROS) and caspase activation
Casp↑,
eff↑, Galangin- and chrysin-induced apoptosis and mitochondrial membrane potential loss in B16-F1 and A375 melanoma cell lines
ERK↓, Galangin- and chrysin-induced apoptosis and mitochondrial membrane potential loss in B16-F1 and A375 melanoma cell lines
Dose∅, propolis extracts at concentrations of 50 μg/mL significantly increased the levels of TRAIL in cervical tumor cell lines
TRAIL↑,
NF-kB↑, p53, NF-κB, and ROS. These molecules were found to be elevated following exposure of the cells to the alcoholic extract of the propolis
ROS↑,
Dose↑, high concentrations, propolis increased the amounts of integrin β4, ROS, and p53
MMP↓, high expression levels of these molecules, in turn, drove a decrease in mitochondrial membrane potential
DNAdam↑, propolis extract induced DNA fragmentation
TumAuto↑, CAPE, were found to induce autophagy in a breast cancer cell line (MDA-MB-231) through upregulating LC3-II and downregulating p62,
LC3II↑,
p62↓,
EGF↓, downregulation of EGF, HIF-1α, and VEGF
Hif1a↓,
VEGF↓,
TLR4↓, downregulating Toll-like receptor 4 (TLR-4), glycogen synthase kinase 3 beta (GSK3 β), and NF-κB signaling pathways
GSK‐3β↓,
NF-kB↓,
Telomerase↓, Propolis was shown to inhibit the telomerase reverse transcriptase activity in leukemia cells.
ChemoSen↑, Propolis has been shown to increase the activity of existing chemotherapeutic agents and inhibit some of their side effects
ChemoSideEff↓,

1664- PBG,    Anticancer Activity of Propolis and Its Compounds
- Review, Var, NA
Apoptosis↑,
TumCMig↓,
TumCCA↑,
TumCP↓,
angioG↓,
P21↑, upregulating p21 and p27 expression
p27↑,
CDK1↓, thanol-extracted Cameroonian propolis increased the amount of DU145 and PC3 cells in G0/G1 phase, down-regulated cell cycle proteins (CDK1, pCDK1, and their related cyclins A and B)
p‑CDK1↓,
cycA1↓,
CycB↓,
P70S6K↓, Caffeic acid phenylethyl ester has been shown to inhibit the S6 beta-1 ribosomal protein kinase (p70S6K),
CLDN2↓, inhibition of NF-κB may be involved in the decrease of claudin-2 mRNA level
HK2↓, Chinese poplar propolis has been shown to significantly reduce the level of glycolysis at the stage of action of hexokinase 2 (HK2), phosphofructokinase (PFK), muscle isozyme pyruvate kinase M2 (PKM2), and lactate dehydrogenase A (LDHA)
PFK↓,
PKM2↓,
LDHA↓,
TLR4↓, hinese propolis, as well as CAPE, inhibits breast cancer cell proliferation in the inflammatory microenvironment by inhibiting the Toll-like receptor 4 (TLR4) signal pathway
H3↓, Brazilian red propolis bioactive isoflavonoid, down-regulates the alpha-tubulin, tubulin in microtubules, and histone H3 genes
α-tubulin↓,
ROS↑, CAPE also affects the apoptotic intrinsic pathway by increasing ROS production
Akt↓, CAPE induces apoptosis by decreasing the levels of proteins related to carcinogenesis, including Akt, GSK3b, FOXO1, FOXO3a, NF-kB, Skp2 and cyclin D1
GSK‐3β↓,
FOXO3↓,
NF-kB↓,
cycD1↓,
MMP↓, It was found that chrysin caused a loss of mitochondria membrane potential (MMP) while increasing the production of reactive oxygen species (ROS), cytoplasmic Ca2+ levels, and lipid peroxidation
ROS↑,
i-Ca+2↑,
lipid-P↑,
ER Stress↑, Chrysin also induced endoplasmic reticulum (ER) stress by activating unfolded protein response proteins (UPR) such as PRKR-like ER kinase (PERK), eukaryotic translation initiation factor 2α (eIF2α), and 78 kDa glucose-regulated protein (GRP78)
UPR↑,
PERK↑,
eIF2α↑,
GRP78/BiP↑,
BAX↑, CAPE activated Bax protein
PUMA↑, CAPE also significantly increased PUMA expression
ROS↑, Northeast China causes cell apoptosis in human gastric cancer cells with increased production of reactive oxygen species (ROS) and reduced mitochondrial membrane potential.
MMP↓,
Cyt‑c↑, release of cytochrome C from mitochondria to the cytoplasm is observed, as well as the activation of cleaved caspases (8, 9, and 3) and PARP
cl‑Casp8↑,
cl‑Casp8↑,
cl‑Casp3↑,
cl‑PARP↑,
eff↑, administration of Iranian propolis extract in combination with 5-fluorouracil (5-FU) significantly reduced the number of azaxymethane-induced aberrant crypt foci compared to 5-FU or propolis alone.
eff↑, Propolis may also have a positive effect on the efficacy of photodynamic therapy (PDT). enhances the intracellular accumulation of protoporphyrin IX (PpIX) in human epidermoid carcinoma cells
RadioS↑, breast cancer patients undergoing radiotherapy and supplemented with propolis had a statistically significant longer median disease-free survival time than the control group
ChemoSen↑, confirmed that propolis mouthwash is effective and safe in the treatment of chemo- or radiotherapy-induced oral mucositis in cancer patients.
eff↑, Quercetin, ferulic acid, and CAPE may also influence the MDR of cancer cells by inhibiting P-gp expression


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
Akt↓,2,   angioG↓,1,   AntiCan↑,1,   antiOx↑,1,   Apoptosis↑,2,   BAX↑,3,   Bcl-2↓,2,   i-Ca+2↑,1,   Casp↑,1,   Casp3↑,2,   cl‑Casp3↑,1,   cl‑Casp8↑,2,   CDK1↓,1,   p‑CDK1↓,1,   ChemoSen↑,2,   ChemoSideEff↓,1,   CLDN2↓,1,   COX2↓,2,   cycA1↓,1,   CycB↓,1,   cycD1↓,1,   Cyt‑c↑,3,   DNAdam↑,1,   Dose↑,1,   Dose∅,1,   eff↑,6,   eff↝,1,   EGF↓,1,   eIF2α↑,1,   ER Stress↑,1,   ERK↓,1,   FOXO3↓,1,   GRP78/BiP↑,1,   GSK‐3β↓,2,   H3↓,1,   Hif1a↓,1,   HK2↓,1,   IL1β↓,1,   IL1β↑,1,   IL6↓,1,   Inflam↓,1,   iNOS↓,2,   LC3II↑,1,   i-LDH↓,1,   LDHA↓,1,   lipid-P↑,1,   MAPK↓,1,   MMP↓,4,   MMPs↓,1,   NF-kB↓,3,   NF-kB↑,1,   P21↑,1,   p27↑,1,   P53↑,2,   p62↓,1,   P70S6K↓,1,   PARP↓,1,   cl‑PARP↑,1,   PERK↑,1,   PFK↓,1,   PKM2↓,1,   PUMA↑,1,   RadioS↑,1,   ROS↓,1,   ROS↑,5,   selectivity↑,1,   Telomerase↓,1,   TLR4↓,2,   TNF-α↓,2,   TRAIL↑,1,   TumAuto↑,1,   TumCCA↑,2,   TumCMig↓,1,   TumCP↓,2,   UPR↑,1,   VEGF↓,1,   α-tubulin↓,1,  
Total Targets: 77

Results for Effect on Normal Cells:
BioAv↓,1,  
Total Targets: 1

Scientific Paper Hit Count for: Cyt‑c, cyt-c Release into Cytosol
3 Propolis -bee glue
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:137  Target#:77  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page