condition found
Features: Compound |
Brazilian Green Propolis often considered best • Derived from Baccharis dracunulifolia, this type is rich in artepillin C. • It has been widely researched for its anticancer, anti-inflammatory, and antioxidant properties. -Propolis common researched flavonoids :chrysin, pinocembrin, galangin, pinobanksin(Pinocembrin) -most representative phenolic acids were caffeic acid, p-coumaric acid, and ferulic acid, as well as their derivatives, DMCA and caffeic acid prenyl, benzyl, phenylethyl (CAPE), and cinnamyl esters -One of the most studied active compounds of a poplar-type propolis is caffeic acid phenethyl ester (CAPE) -caffeic acid phenethyl ester (CAPE), galangin, chrysin, nemorosone, propolin G, artepillin C, cardanol, pinocembrin, pinobanksin, chicoric acid, and phenolic acids (caffeic acid, ferulic acid, and coumaric acid), as well as luteolin, apigenin, myricetin, naringenin, kaempferol, quercetin, polysaccharides, tannins, terpenes, sterols, and aldehydes -content highly variable based on location and extraction Two main factors of interest: 1. affects interstitual fluild pH 2. high concentration raises ROS (Reactive Oxygen Species), while low concentration may reduce ROS - Artepillin-C (major phenolic compounds found in Brazilian green propolis (BGP)) - caffeic acid major source Do not combine with 2DG Pathways: -Propolis compounds (e.g., artepillin C, caffeic acid phenethyl ester [CAPE]) can trigger apoptosis (programmed cell death) in cancer cells. -Propolis has been shown to inhibit NF‑κB activation. -Propolis extracts can cause cell cycle arrest at specific checkpoints (e.g., G0/G1 or G2/M phases). -Enhance the body’s antitumor immune responses, for example by activating natural killer (NK) cells and modulating cytokine profiles. -Note half-life no standard, high variablity of content. BioAv poor water solubility, and low oral bioavailability. Pathways: - high concentration may induce ROS production, while low concentrations mya low it. This may apply to both normal and cancer cells. Normal Cells Example. (Also not sure if high level are acheivable in vivo due to bioavailability) - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ --> - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, - Others: PI3K↓, AKT↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
Cytochrome c ** The term "release of cytochrome c" ** an increase in level for the cytosol. Small hemeprotein found loosely associated with the inner membrane of the mitochondrion where it plays a critical role in cellular respiration. Cytochrome c is highly water-soluble, unlike other cytochromes. It is capable of undergoing oxidation and reduction as its iron atom converts between the ferrous and ferric forms, but does not bind oxygen. It also plays a major role in cell apoptosis. The term "release of cytochrome c" refers to a critical step in the process of programmed cell death, also known as apoptosis. In its new location—the cytosol—cytochrome c participates in the apoptotic signaling pathway by helping to form the apoptosome, which activates caspases that execute cell death. Cytochrome c is a small protein normally located in the mitochondrial intermembrane space. Its primary role in healthy cells is to participate in the electron transport chain, a process that helps produce energy (ATP) through oxidative phosphorylation. Mitochondrial outer membrane permeability leads to the release of cytochrome c from the mitochondria into the cytosol. The release of cytochrome c is a pivotal event in apoptosis where cytochrome c moves from the mitochondria to the cytosol, initiating a chain reaction that leads to programmed cell death. On the one hand, cytochrome c can promote cancer cell survival and proliferation by regulating the activity of various signaling pathways, such as the PI3K/AKT pathway. This can lead to increased cell growth and resistance to apoptosis, which are hallmarks of cancer. On the other hand, cytochrome c can also induce apoptosis in cancer cells by interacting with other proteins, such as Apaf-1 and caspase-9. This can lead to the activation of the intrinsic apoptotic pathway, which can result in the death of cancer cells. Overexpressed in Breast, Lung, Colon, and Prostrate. Underexpressed in Ovarian, and Pancreatic. |
1682- | PBG,  |   | Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits |
- | Review, | Var, | NA |
1668- | PBG,  |   | Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms |
- | Review, | Var, | NA |
1664- | PBG,  |   | Anticancer Activity of Propolis and Its Compounds |
- | Review, | Var, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:137 Target#:77 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid