condition found tbRes List
PBG, Propolis -bee glue: Click to Expand ⟱
Features: Compound
Brazilian Green Propolis often considered best
• Derived from Baccharis dracunulifolia, this type is rich in artepillin C.
• It has been widely researched for its anticancer, anti-inflammatory, and antioxidant properties.
-Propolis common researched flavonoids :chrysin, pinocembrin, galangin, pinobanksin(Pinocembrin)
-most representative phenolic acids were caffeic acid, p-coumaric acid, and ferulic acid, as well as their derivatives, DMCA and caffeic acid prenyl, benzyl, phenylethyl (CAPE), and cinnamyl esters
-One of the most studied active compounds of a poplar-type propolis is caffeic acid phenethyl ester (CAPE)
-caffeic acid phenethyl ester (CAPE), galangin, chrysin, nemorosone, propolin G, artepillin C, cardanol, pinocembrin, pinobanksin, chicoric acid, and phenolic acids (caffeic acid, ferulic acid, and coumaric acid), as well as luteolin, apigenin, myricetin, naringenin, kaempferol, quercetin, polysaccharides, tannins, terpenes, sterols, and aldehydes -content highly variable based on location and extraction
Two main factors of interest:
1. affects interstitual fluild pH
2. high concentration raises ROS (Reactive Oxygen Species), while low concentration may reduce ROS

- Artepillin-C (major phenolic compounds found in Brazilian green propolis (BGP))
- caffeic acid major source

Do not combine with 2DG

Pathways:
-Propolis compounds (e.g., artepillin C, caffeic acid phenethyl ester [CAPE]) can trigger apoptosis (programmed cell death) in cancer cells.
-Propolis has been shown to inhibit NF‑κB activation.
-Propolis extracts can cause cell cycle arrest at specific checkpoints (e.g., G0/G1 or G2/M phases).
-Enhance the body’s antitumor immune responses, for example by activating natural killer (NK) cells and modulating cytokine profiles.

-Note half-life no standard, high variablity of content.
BioAv poor water solubility, and low oral bioavailability.
Pathways:
- high concentration may induce ROS production, while low concentrations mya low it. This may apply to both normal and cancer cells. Normal Cells Example. (Also not sure if high level are acheivable in vivo due to bioavailability)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ -->
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓,
- Others: PI3K↓, AKT↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


selectivity, selectivity: Click to Expand ⟱
Source:
Type:
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues.

Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance

Factors that affect selectivity:
1. Ability of Cancer cells to preferentially absorb a product/drug
-EPR-enhanced permeability and retention of cancer cells
-nanoparticle formations/carriers may target cancer cells over normal cells
-Liposomal formations. Also negatively/positively charged affects absorbtion

2. Product/drug effect may be different for normal vs cancer cells
- hypoxia
- transition metal content levels (iron/copper) change probability of fenton reaction.
- pH levels
- antiOxidant levels and defense levels

3. Bio-availability


Scientific Papers found: Click to Expand⟱
1681- PBG,    Propolis: Its Role and Efficacy in Human Health and Diseases
- Review, Nor, NA
*Inflam↓,
*AntiCan↑,
*antiOx↑,
*hyperG↓, flavanone glycoside found in propolis, has been reported to have insulin-like and lipid-reducing properties that reduce both insulin resistance and hyperglycemia
*BG↓, These flavonoids, including apigenin, naringin, chrysin, galangin, kaempferol, luteolin, genistein, and quercetin help to reduce blood glucose concentration
*HbA1c↓, propolis showed significant effects, reducing the blood glucose levels, serum insulin, and serum glycosylated haemoglobin (HbA1c) levels of T2DM patients
*NF-kB↓, propolis can also suppress inflammatory cascades by blocking the NF-κB pathway and reducing ROS by enhancing antioxidants
*ROS↓,
*TGF-β↑, formation of the transforming growth factor-β1 (TGF-β1) of the cells are promoted by the caffeic acid, CAPE, hesperidin, and quercetin of propolis
*selectivity↑, CAPE is a very significant compound of propolis that has anti-inflammatory properties and also acts as the selective inhibitor of NF-κB activation

1684- PBG,    Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, HUVECs
Apoptosis?, treatment of EECP for 24 and 48 h induced both cells apoptosis obviously
ANXA7↑, EECP significantly increased ANXA7 expression and ROS level, and NF-κB p65 level
ROS↑,
NF-kB↓, EECP significantly upregulated the expression of ANXA7 and downregulated NF-?B p65 level in a dose-dependent manner
MMP↓, mitochondrial membrane potential were depressed by EECP dramatically
selectivity↑, EECP had little or small cytotoxicity on normal human umbilical vein endothelial cells (HUVECs)

1685- PBG,    Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells
- in-vitro, BC, MCF-7
ANXA7↑, Exposure to EECP significantly increased ANXA7 expression and ROS level
ROS↑,
NF-kB↓, NF-κB p65 level and mitochondrial membrane potential were depressed by EECP dramatically.
MMP↓,
selectivity↑, Interestingly, EECP had little or small cytotoxicity on normal human umbilical vein endothelial cells (HUVECs)
Dose⇅, propolis plays a dual role on ROS depending on concentrations: at high concentration, it exerts a prooxidant effect; at low concentration, it can also act as an antioxidant by scavenging free radicals.
ROS⇅,

1668- PBG,    Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms
- Review, Var, NA
antiOx↑, Propolis has well-known therapeutic actions including antioxidative, antimicrobial, anti-inflammatory, and anticancer properties.
Inflam↓,
AntiCan↑,
TumCP↓, primarily by inhibiting cancer cell proliferation, inducing apoptosis
Apoptosis↑,
eff↝, Depending on the bee species, geographic location, plant species, and weather conditions, the chemical makeup of propolis fluctuates significantly
MMPs↓, via inhibiting the metastatic protein expression such as MMPs (matrix metalloproteinases)
TNF-α↓, inhibit inflammatory mediators including tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS), cyclooxygenase-1/2 (COX ½), lipoxygenase (LOX), prostaglandins (PGs), and interleukin 1- β (IL1-β)
iNOS↓,
COX2↓,
IL1β↑,
*BioAv↓, Despite the low bioavailability of Artepillin C, a compound with a wide variety of physiological activities
BAX↑, Egyptian propolis extract revealed high apoptotic effects through an increase in BAX (pro-apoptotic protein), caspase-3, and cytochrome-c expression levels, and by a reduction in B-cell lymphoma2 (BCL2)
Casp3↑,
Cyt‑c↑,
Bcl-2↓,
eff↑, enhanced the G0/G1 cell cycle arrest induced by methotrexate
selectivity↑, Thailand propolis on normal and cancerous cells carried out by Umthong et al. found significant differences with the propolis showing cytotoxicity against cancerous but not normal cells.
P53↑, significant increases in the levels of p53 in cells treated with propolis extracts.
ROS↑, propolis induced apoptosis in the SW620 human colorectal cancer cell line through mitochondrial dysfunction caused by high production of reactive oxygen species (ROS) and caspase activation
Casp↑,
eff↑, Galangin- and chrysin-induced apoptosis and mitochondrial membrane potential loss in B16-F1 and A375 melanoma cell lines
ERK↓, Galangin- and chrysin-induced apoptosis and mitochondrial membrane potential loss in B16-F1 and A375 melanoma cell lines
Dose∅, propolis extracts at concentrations of 50 μg/mL significantly increased the levels of TRAIL in cervical tumor cell lines
TRAIL↑,
NF-kB↑, p53, NF-κB, and ROS. These molecules were found to be elevated following exposure of the cells to the alcoholic extract of the propolis
ROS↑,
Dose↑, high concentrations, propolis increased the amounts of integrin β4, ROS, and p53
MMP↓, high expression levels of these molecules, in turn, drove a decrease in mitochondrial membrane potential
DNAdam↑, propolis extract induced DNA fragmentation
TumAuto↑, CAPE, were found to induce autophagy in a breast cancer cell line (MDA-MB-231) through upregulating LC3-II and downregulating p62,
LC3II↑,
p62↓,
EGF↓, downregulation of EGF, HIF-1α, and VEGF
Hif1a↓,
VEGF↓,
TLR4↓, downregulating Toll-like receptor 4 (TLR-4), glycogen synthase kinase 3 beta (GSK3 β), and NF-κB signaling pathways
GSK‐3β↓,
NF-kB↓,
Telomerase↓, Propolis was shown to inhibit the telomerase reverse transcriptase activity in leukemia cells.
ChemoSen↑, Propolis has been shown to increase the activity of existing chemotherapeutic agents and inhibit some of their side effects
ChemoSideEff↓,

1663- PBG,    Propolis and Their Active Constituents for Chronic Diseases
- Review, Var, NA
NF-kB↓, CAPE (a bioactive constituent of propolis) was reported to have anticancer properties by inhibiting NF-κB, caspase and Fas signaling activation in MCF-7 cells
Casp↓,
Fas↓,
DNAdam↑, DNA fragmentation, CCAAT/enhancer binding protein homologous protein expression and caspase-3 activity
Casp3↑,
P53↝, Chinese propolis (EECP) and its bioactive constituents mainly persist due to regulation of the annexin A7 and p53 proteins, mitochondrial membrane potential and ROSs, as well as that inhibition of NF-κB causes apoptosis in cancer cells
MMP↝,
ROS↑, Herrera et al. and reported on the MDA-MB 231 tumor cell line, and the inhibitory effect of propolis was proposed to occur through the induction of mitochondrial dysfunction, resulting in ROS-associated necrosis
mtDam↑,
Dose?, A concentration of 100 μg/mL was able to attain 71% cytotoxicity
angioG↓, negative effect on angiogenesis, proliferation and migration of tumor cells. A concentration of 25–200 μg/mL noticeably inhibited the metastasis of breast cancer
TumCP↓,
TumCMig↓,
BAX↑,
selectivity↑, Negligible effect in fibroblasts
MMP↓, Cuban: Disturbed the mitochondrial potential, lactate dehydrogenase released, production of ROS and cell migration
LDH↓,
IL6↓, Chinese: Decreased cell tube generation, IL-6, IL-1β, TNF-α-like inflammatory mediators, glycolytic enzymes and mitochondrial potential. Promoted ROS generation
IL1β↓,
TNF-α↓,

1666- PBG,    Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer
- Review, Var, NA
ChemoSen↑, Ingredients from propolis also ”sensitize“ cancer cells to chemotherapeutic agents
TumCCA↑, cell-cycle arrest and attenuation of cancer cells proliferation
TumCP↓,
Apoptosis↑,
antiOx↓, behave as antioxidants against peroxyl and hydroxyl radicals,
ROS↑, whereas prooxidant activity is observed in the presence of Cu2+.
COX2↑, Propolis, as well as flavonoids derived from propolis, such as galangin, is a potent COX-2 inhibitor
ER(estro)↓, Some flavonoids from propolis, such as galangin, genistein, baicalein, hesperetin, naringenin, and quercetin, suppressed the proliferation of an estrogen receptor (ER)
cycA1↓, by suppressing expressions of cyclin A, cyclin B, and Cdk2 and by stopping proliferation at the G2 phase, by increasing levels of p21 and p27 proteins, and through the inhibition of telomerase reverse transcriptase (hTERT),
CycB↓,
CDK2↓,
P21↑,
p27↑,
hTERT↓, leukemia cells, propolis successfully reduced hTERT mRNA expression
HDAC↓, by suppressing expressions of cyclin A, cyclin B, and Cdk2 and by stopping proliferation at the G2 phase, by increasing levels of p21 and p27 proteins, and through the inhibition of telomerase reverse transcriptase (hTERT),
ROS⇅, Mexican propolis, demonstrated both pro- and anti-inflammatory effects, depending on the dose applied
Dose?, Mexican propolis, demonstrated both pro- and anti-inflammatory effects, depending on the dose applied
ROS↓, By scavenging free radicals, chelating metal ions (mainly iron and copper), and stimulating endogenous antioxidant defenses, propolis and its flavonoids directly attenuate the generation of ROS
ROS↑, Romanian propolis [99], exhibits prooxidant properties at high concentrations, by mobilizing endogenous copper ions and DNA-associated copper in cells.
DNAdam↑, propolis, i.e., its polyphenolic components, may induce DNA damage in the presence of transition metal ions.
ChemoSen↑, Algerian propolis + doxorubicin decreased cell viability, prevented cell proliferation and cell cycle progression, induced apoptosis by activating caspase-3 and -9 activities, and increased the accumulation of chemotherapeutic drugs in MDA-MB-231 cel
LOX1↓, propolis components inhibited the LOX pathway
lipid-P↓, Croatian propolis improved psoriatic-like skin lesions induced by irritant agents n-hexyl salicylate or di-n-propyl disulfide by decreasing the extent of lipid peroxidation
NO↑, Taken together, propolis may increase the phagocytic index, NO production, and production of IgG antibodies
Igs↑,
NK cell↑, propolis treatment for 3 days increases the cytotoxic activity of NK cells against murine lymphoma.
MMPs↓, extracts of propolis containing artepillin C and CAPE decreased the formation of new vessels and expression of MMPs and VEGF in various cancer cells
VEGF↓,
Hif1a↓, Brazilian green propolis inhibit the expression of the hypoxia-inducible factor-1 (HIF-1) protein and HIF-1 downstream targets such as glucose transporter 1, hexokinase 2, and VEGF-A
GLUT1↓,
HK2↓,
selectivity↑, Portuguese propolis was selectively toxic against malignant cells.
RadioS↑, propolis increased the lifespan of mice that received the radiotherapy with gamma rays
GlucoseCon↓, Portuguese propolis disturbed the glycolytic metabolism of human colorectal cancer cells, as evidenced by a decrease in glucose consumption and lactate production
lactateProd↓,
eff↓, Furthermore, different pesticides or heavy metals can be found in propolis, which can cause unwanted side effects.
*BioAv↓, Due to the low bioavailability and clinical efficacy of propolis and its flavonoids, their biomedical applications remain limited.

1670- PBG,    Lung response to propolis treatment during experimentally induced lung adenocarcinoma
- in-vivo, Lung, NA
GSH↑, When compared to the URT group in the current investigation, the GSH and SOD levels in the rats treated with the URT + PE group were significantly higher.
SOD↑,
MDA↓, The malondialdehyde (MDA) level in the URT + PE group was significantly lower than in the URT group.
selectivity↑, Brazilian propolis is selective for tumour cells as opposed to healthy cells and that it inhibits the growth of A549 cells in a dose-dependent manner.
Inflam↓, In the current study, the improvement in area % of collagen fibres following PE treatment might be attributed to propolis’ anti-inflammatory characteristics
TumW↓, The current study found that the URT + PE group appeared without the tumour mass and almost restored normal Clara cell ultra-structures.

1674- PBG,  SDT,  HPT,    Study on the effect of a triple cancer treatment of propolis, thermal cycling-hyperthermia, and low-intensity ultrasound on PANC-1 cells
- in-vitro, PC, PANC1 - in-vitro, Nor, H6c7
tumCV↓, cell viability of a human cancer cell line PANC-1 decreased to a level 80% less than the control
ROS↑, triple treatment showed a significant accumulation of the intracellular ROS (up to a 2.1-fold increase)
eff↑, combination of TC-HT and US also promotes the anticancer effect of the heat-sensitive chemotherapy drug cisplatin on PANC-1 cells
Dose∅, moderate propolis concentration 0.3%, 10-cycles TC-HT and 2.25 MHz US with intensity 0.3 W/cm2 and duration 30 minutes were chosen to avoid the thermotoxicity on PANC-1 cells
selectivity↑, Moreover, normal cells such as the human skin cells Detroit 551 (Figure 1D) and human pancreatic duct cells H6c7 (Figure 1E) were not significantly affected by the triple treatment as well as all the other treatments.
MMP↓, ratio of the cells exhibiting MMP loss was significantly promoted to 23.3% after the double treatment of propolis + TC-HT, and it was further elevated significantly to 34.7% by employing the triple treatment.
mtDam↑, hence caused more mitochondrial dysfunction
cl‑PARP↑, PARP cleavage was further promoted significantly to a 6.2-fold increase by US in the triple treatment
p‑ERK↓, the p-ERK level was suppressed by propolis + TC-HT treatment (0.30-fold decrease), and was further down-regulated when US was introduced in the triple treatment (0.15-fold decrease)
p‑JNK↑, p-JNK and p-p38 levels both exhibited a reverse performance, which were promoted the most in the triple treatment (8.7-fold and 9.2-fold increase, respectively)
p‑p38↑,
eff↓, inhibitory effect of the triple treatment was restored by NAC
ChemoSen↑, cisplatin + TC-HT treatment significantly elevated PARP cleavage to a 3.20-fold increase. This elevation was further increased with the help of US (5.82-fold increase).


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 8

Results for Effect on Cancer/Diseased Cells:
angioG↓,1,   AntiCan↑,1,   antiOx↓,1,   antiOx↑,1,   ANXA7↑,2,   Apoptosis?,1,   Apoptosis↑,2,   BAX↑,2,   Bcl-2↓,1,   Casp↓,1,   Casp↑,1,   Casp3↑,2,   CDK2↓,1,   ChemoSen↑,4,   ChemoSideEff↓,1,   COX2↓,1,   COX2↑,1,   cycA1↓,1,   CycB↓,1,   Cyt‑c↑,1,   DNAdam↑,3,   Dose?,2,   Dose↑,1,   Dose⇅,1,   Dose∅,2,   eff↓,2,   eff↑,3,   eff↝,1,   EGF↓,1,   ER(estro)↓,1,   ERK↓,1,   p‑ERK↓,1,   Fas↓,1,   GlucoseCon↓,1,   GLUT1↓,1,   GSH↑,1,   GSK‐3β↓,1,   HDAC↓,1,   Hif1a↓,2,   HK2↓,1,   hTERT↓,1,   Igs↑,1,   IL1β↓,1,   IL1β↑,1,   IL6↓,1,   Inflam↓,2,   iNOS↓,1,   p‑JNK↑,1,   lactateProd↓,1,   LC3II↑,1,   LDH↓,1,   lipid-P↓,1,   LOX1↓,1,   MDA↓,1,   MMP↓,5,   MMP↝,1,   MMPs↓,2,   mtDam↑,2,   NF-kB↓,4,   NF-kB↑,1,   NK cell↑,1,   NO↑,1,   P21↑,1,   p27↑,1,   p‑p38↑,1,   P53↑,1,   P53↝,1,   p62↓,1,   cl‑PARP↑,1,   RadioS↑,1,   ROS↓,1,   ROS↑,8,   ROS⇅,2,   selectivity↑,7,   SOD↑,1,   Telomerase↓,1,   TLR4↓,1,   TNF-α↓,2,   TRAIL↑,1,   TumAuto↑,1,   TumCCA↑,1,   TumCMig↓,1,   TumCP↓,3,   tumCV↓,1,   TumW↓,1,   VEGF↓,2,  
Total Targets: 86

Results for Effect on Normal Cells:
AntiCan↑,1,   antiOx↑,1,   BG↓,1,   BioAv↓,2,   HbA1c↓,1,   hyperG↓,1,   Inflam↓,1,   NF-kB↓,1,   ROS↓,1,   selectivity↑,1,   TGF-β↑,1,  
Total Targets: 11

Scientific Paper Hit Count for: selectivity, selectivity
8 Propolis -bee glue
1 SonoDynamic Therapy UltraSound
1 Hyperthermia
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:137  Target#:1110  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page