condition found tbRes List
PBG, Propolis -bee glue: Click to Expand ⟱
Features: Compound
Brazilian Green Propolis often considered best
• Derived from Baccharis dracunulifolia, this type is rich in artepillin C.
• It has been widely researched for its anticancer, anti-inflammatory, and antioxidant properties.
-Propolis common researched flavonoids :chrysin, pinocembrin, galangin, pinobanksin(Pinocembrin)
-most representative phenolic acids were caffeic acid, p-coumaric acid, and ferulic acid, as well as their derivatives, DMCA and caffeic acid prenyl, benzyl, phenylethyl (CAPE), and cinnamyl esters
-One of the most studied active compounds of a poplar-type propolis is caffeic acid phenethyl ester (CAPE)
-caffeic acid phenethyl ester (CAPE), galangin, chrysin, nemorosone, propolin G, artepillin C, cardanol, pinocembrin, pinobanksin, chicoric acid, and phenolic acids (caffeic acid, ferulic acid, and coumaric acid), as well as luteolin, apigenin, myricetin, naringenin, kaempferol, quercetin, polysaccharides, tannins, terpenes, sterols, and aldehydes -content highly variable based on location and extraction
Two main factors of interest:
1. affects interstitual fluild pH
2. high concentration raises ROS (Reactive Oxygen Species), while low concentration may reduce ROS

- Artepillin-C (major phenolic compounds found in Brazilian green propolis (BGP))
- caffeic acid major source

Do not combine with 2DG

Pathways:
-Propolis compounds (e.g., artepillin C, caffeic acid phenethyl ester [CAPE]) can trigger apoptosis (programmed cell death) in cancer cells.
-Propolis has been shown to inhibit NF‑κB activation.
-Propolis extracts can cause cell cycle arrest at specific checkpoints (e.g., G0/G1 or G2/M phases).
-Enhance the body’s antitumor immune responses, for example by activating natural killer (NK) cells and modulating cytokine profiles.

-Note half-life no standard, high variablity of content.
BioAv poor water solubility, and low oral bioavailability.
Pathways:
- high concentration may induce ROS production, while low concentrations mya low it. This may apply to both normal and cancer cells. Normal Cells Example. (Also not sure if high level are acheivable in vivo due to bioavailability)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ -->
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓,
- Others: PI3K↓, AKT↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


cycE, Cyclin E: Click to Expand ⟱
Source:
Type:
Cyclin E regulates multiple downstream molecules, such as the retinoblastoma susceptibility gene (RB1) and the transcription factor E2F.
Cyclin E is a prognostic marker in breast cancer, its altered expression increased with the increasing stage and grade of the tumor.
Cyclin E is a regulatory protein that plays a critical role in the cell cycle, particularly in the transition from the G1 phase to the S phase. Its expression levels can significantly influence cancer progression and patient prognosis.

Cyclin E expression is frequently elevated in various cancers and is generally associated with poor prognosis. Its role in promoting cell cycle progression makes it a potential biomarker for tumor aggressiveness and patient outcomes.


Scientific Papers found: Click to Expand⟱
1676- PBG,    Use of Stingless Bee Propolis and Geopropolis against Cancer—A Literature Review of Preclinical Studies
- Review, Var, NA
ROS↑, evidenced in the accumulation of reactive oxygen species (ROS)
MMP↓, reduction of mitochondrial membrane potential (Δψm)
Bcl-2↓, decreased levels of Bcl-2 proteins (antiapoptotic proteins) and AKT-3
eff↑, combination of the extract (30 µg/mL) with the antineoplastic vemurafenib (15 μM) against melanoma cells demonstrated a synergistic effect
tumCV↓, decreased cell viability for 23% of the colon cancer cells (SW620) treated with the aqueous propolis extract produced by Trigona laeviceps
TumCCA↑, antitumor activity of artepillin C is mediated by one of the following mechanisms: induction of cell cycle arrest in cancer cells, inhibition of angiogenesis, and inhibition of the oncogenic PAK1 signaling cascade
angioG↓,
PAK1↓,
HDAC1↓, negatively regulated expression of histone deacetylases (HDAC) 1 and 2
HDAC2↓,
P53↑, positive regulation of acetyl-p53 expression at the protein level
PCNA↓, negative regulation of cell-cycle-related gene expression, i.e., proliferating cell nuclear antigen (PCNA) and cyclin D1 and E1
cycD1↓,
cycE↓,
P21?, positively regulating the expression of the cell cycle arrest gene p21
BAX↑, Bax, Bcl-2, cleaved caspase-3, and poly(ADP-ribose) polymerase
cl‑Casp3↑,
cl‑PARP↑,
ChemoSen↑, apigenin significantly down-regulates Mcl-1 transcription and translation levels in SKOV3 and SKOV3/DDP cells, which is responsible for its cytotoxic functions and chemosensitizing effects


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:
angioG↓,1,   BAX↑,1,   Bcl-2↓,1,   cl‑Casp3↑,1,   ChemoSen↑,1,   cycD1↓,1,   cycE↓,1,   eff↑,1,   HDAC1↓,1,   HDAC2↓,1,   MMP↓,1,   P21?,1,   P53↑,1,   PAK1↓,1,   cl‑PARP↑,1,   PCNA↓,1,   ROS↑,1,   TumCCA↑,1,   tumCV↓,1,  
Total Targets: 19

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: cycE, Cyclin E
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:137  Target#:378  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page