condition found tbRes List
PBG, Propolis -bee glue: Click to Expand ⟱
Features: Compound
Brazilian Green Propolis often considered best
• Derived from Baccharis dracunulifolia, this type is rich in artepillin C.
• It has been widely researched for its anticancer, anti-inflammatory, and antioxidant properties.
-Propolis common researched flavonoids :chrysin, pinocembrin, galangin, pinobanksin(Pinocembrin)
-most representative phenolic acids were caffeic acid, p-coumaric acid, and ferulic acid, as well as their derivatives, DMCA and caffeic acid prenyl, benzyl, phenylethyl (CAPE), and cinnamyl esters
-One of the most studied active compounds of a poplar-type propolis is caffeic acid phenethyl ester (CAPE)
-caffeic acid phenethyl ester (CAPE), galangin, chrysin, nemorosone, propolin G, artepillin C, cardanol, pinocembrin, pinobanksin, chicoric acid, and phenolic acids (caffeic acid, ferulic acid, and coumaric acid), as well as luteolin, apigenin, myricetin, naringenin, kaempferol, quercetin, polysaccharides, tannins, terpenes, sterols, and aldehydes -content highly variable based on location and extraction
Two main factors of interest:
1. affects interstitual fluild pH
2. high concentration raises ROS (Reactive Oxygen Species), while low concentration may reduce ROS

- Artepillin-C (major phenolic compounds found in Brazilian green propolis (BGP))
- caffeic acid major source

Do not combine with 2DG

Pathways:
-Propolis compounds (e.g., artepillin C, caffeic acid phenethyl ester [CAPE]) can trigger apoptosis (programmed cell death) in cancer cells.
-Propolis has been shown to inhibit NF‑κB activation.
-Propolis extracts can cause cell cycle arrest at specific checkpoints (e.g., G0/G1 or G2/M phases).
-Enhance the body’s antitumor immune responses, for example by activating natural killer (NK) cells and modulating cytokine profiles.

-Note half-life no standard, high variablity of content.
BioAv poor water solubility, and low oral bioavailability.
Pathways:
- high concentration may induce ROS production, while low concentrations mya low it. This may apply to both normal and cancer cells. Normal Cells Example. (Also not sure if high level are acheivable in vivo due to bioavailability)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ -->
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓,
- Others: PI3K↓, AKT↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Glycolysis, Glycolysis: Click to Expand ⟱
Source:
Type:
Glycolysis is a metabolic pathway that converts glucose into pyruvate, producing a small amount of ATP (energy) in the process. It is a fundamental process for cellular energy production and occurs in the cytoplasm of cells. In normal cells, glycolysis is tightly regulated and is followed by aerobic respiration in the presence of oxygen, which allows for the efficient production of ATP.
In cancer cells, however, glycolysis is often upregulated, even in the presence of oxygen. This phenomenon is known as the Warburg Mutations in oncogenes (like MYC) and tumor suppressor genes (like TP53) can alter metabolic pathways, promoting glycolysis and other anabolic processes that support cell growth.effect.
Acidosis: The increased production of lactate from glycolysis can lead to an acidic microenvironment, which may promote tumor invasion and suppress immune responses.

Glycolysis is a hallmark of malignancy transformation in solid tumor, and LDH is the key enzyme involved in glycolysis.

Pathways:
-GLUTs, HK2, PFK, PK, PKM2, LDH, LDHA, PI3K/AKT/mTOR, AMPK, HIF-1a, c-MYC, p53, SIRT6, HSP90α, GAPDH, HBT, PPP, Lactate Metabolism, ALDO

Natural products targeting glycolytic signaling pathways https://pmc.ncbi.nlm.nih.gov/articles/PMC9631946/
Alkaloids:
-Berberine, Worenine, Sinomenine, NK007, Tetrandrine, N-methylhermeanthidine chloride, Dauricine, Oxymatrine, Matrine, Cryptolepine

Flavonoids: -Oroxyline A, Apigenin, Kaempferol, Quercetin, Wogonin, Baicalein, Chrysin, Genistein, Cardamonin, Phloretin, Morusin, Bavachinin, 4-O-methylalpinumisofavone, Glabridin, Icaritin, LicA, Naringin, IVT, Proanthocyanidin B2, Scutellarin, Hesperidin, Silibinin, Catechin, EGCG, EGC, Xanthohumol.

Non-flavonoid phenolic compounds:
Curcumin, Resveratrol, Gossypol, Tannic acid.

Terpenoids:
-Cantharidin, Dihydroartemisinin, Oleanolic acid, Jolkinolide B, Cynaropicrin, Ursolic Acid, Triptolie, Oridonin, Micheliolide, Betulinic Acid, Beta-escin, Limonin, Bruceine D, Prosapogenin A (PSA), Oleuropein, Dioscin.

Quinones:
-Thymoquinone, Lapachoi, Tan IIA, Emodine, Rhein, Shikonin, Hypericin

Others:
-Perillyl alcohol, HCA, Melatonin, Sulforaphane, Vitamin D3, Mycoepoxydiene, Methyl jasmonate, CK, Phsyciosporin, Gliotoxin, Graviola, Ginsenoside, Beta-Carotene.


Scientific Papers found: Click to Expand⟱
2781- CHr,  PBG,    Chrysin a promising anticancer agent: recent perspectives
- Review, Var, NA
PI3K↓, It can block Phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling in different animals against various cancers
Akt↓,
mTOR↓,
MMP9↑, Chrysin strongly suppresses Matrix metalloproteinase-9 (MMP-9), Urokinase plasminogen activator (uPA) and Vascular endothelial growth factor (VEGF), i.e. factors that can cause cancer
uPA↓,
VEGF↓,
AR↓, Chrysin has the ability to suppress the androgen receptor (AR), a protein necessary for prostate cancer development and metastasis
Casp↑, starts the caspase cascade and blocks protein synthesis to kill lung cancer cells
TumMeta↓, Chrysin significantly decreased lung cancer metastasis i
TumCCA↑, Chrysin induces apoptosis and stops colon cancer cells in the G2/M cell cycle phase
angioG↓, Chrysin prevents tumor growth and cancer spread by blocking blood vessel expansion
BioAv↓, Chrysin’s solubility, accessibility and bioavailability may limit its medical use.
*hepatoP↑, As chrysin reduced oxidative stress and lipid peroxidation in rat liver cells exposed to a toxic chemical agent.
*neuroP↑, Protecting the brain against oxidative stress (GPx) may be aided by increasing levels of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx).
*SOD↑,
*GPx↑,
*ROS↓, A decrease in oxidative stress and an increase in antioxidant capacity may result from chrysin’s anti-inflammatory properties
*Inflam↓,
*Catalase↑, Supplementation with chrysin increased the activity of antioxidant enzymes like SOD and catalase and reduced the levels of oxidative stress markers like malondialdehyde (MDA) in the colon tissue of the rats.
*MDA↓, Antioxidant enzyme activity (SOD, CAT) and oxidative stress marker (MDA) levels were both enhanced by chrysin supplementation in mouse liver tissue
ROS↓, reduction of reactive oxygen species (ROS) and oxidative stress markers in the cancer cells further indicated the antioxidant activity of chrysin
BBB↑, After crossing the blood-brain barrier, it has been shown to accumulate there
Half-Life↓, The half-life of chrysin in rats is predicted to be close to 2 hours.
BioAv↑, Taking chrysin with food may increase the effectiveness of the supplement: increased by a factor of 1.8 when taken with a high-fat meal
ROS↑, In contrast to 5-FU/oxaliplatin, chrysin increases the production of reactive oxygen species (ROS), which in turn causes autophagy by stopping Akt and mTOR from doing their jobs
eff↑, mixture of chrysin and cisplatin caused the SCC-25 and CAL-27 cell lines to make more oxygen free radicals. After treatment with chrysin, cisplatin, or both, the amount of reactive oxygen species (ROS) was found to have gone up.
ROS↑, When reactive oxygen species (ROS) and calcium levels in the cytoplasm rise because of chrysin, OC cells die.
ROS↑, chrysin is the cause of death in both types of prostate cancer cells. It does this by depolarizing mitochondrial membrane potential (MMP), making reactive oxygen species (ROS), and starting lipid peroxidation.
lipid-P↑,
ER Stress↑, when chrysin is present in DU145 and PC-3 cells, the expression of a group of proteins that control ER stress goes up
NOTCH1↑, Chrysin increased the production of Notch 1 and hairy/enhancer of split 1 at the protein and mRNA levels, which stopped cells from dividing
NRF2↓, Not only did chrysin stop Nrf2 and the genes it controls from working, but it also caused MCF-7 breast cancer cells to die via apoptosis.
p‑FAK↓, After 48 hours of treatment with chrysin at amounts between 5 and 15 millimoles, p-FAK and RhoA were greatly lowered
Rho↓,
PCNA↓, Lung histology and immunoblotting studies of PCNA, COX-2, and NF-B showed that adding chrysin stopped the production of these proteins and maintained the balance of cells
COX2↓,
NF-kB↓,
PDK1↓, After the chrysin was injected, the genes PDK1, PDK3, and GLUT1 that are involved in glycolysis had less expression
PDK3↑,
GLUT1↓,
Glycolysis↓, chrysin stops glycolysis
mt-ATP↓, chrysin inhibits complex II and ATPases in the mitochondria of cancer cells
Ki-67↓, the amounts of Ki-67, which is a sign of growth, and c-Myc in the tumor tissues went down
cMyc↓,
ROCK1↓, (ROCK1), transgelin 2 (TAGLN2), and FCH and Mu domain containing endocytic adaptor 2 (FCHO2) were much lower.
TOP1↓, DNA topoisomerases and histone deacetylase were inhibited, along with the synthesis of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and (IL-1 beta), while the activity of protective signaling pathways was increased
TNF-α↓,
IL1β↓,
CycB↓, Chrysin suppressed cyclin B1 and CDK2 production in order to stop cancerous growth.
CDK2↓,
EMT↓, chrysin treatment can also stop EMT
STAT3↓, chrysin block the STAT3 and NF-B pathways, but it also greatly reduced PD-L1 production both in vivo and in vitro.
PD-L1↓,
IL2↑, chrysin increases both the rate of T cell growth and the amount of IL-2

2380- PBG,    Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy
- Review, Var, NA
Hif1a↓, Flavonoid components from propolis, as inhibitors of HIF-1, have the ability to regulate critical glycolytic components in cancer cells, including (PKM2), (LDHA), (GLUTs), (HKII), (PFK-1), and (PDK)
Glycolysis↓,
PKM2↓,
LDHA↓,
GLUT2↓,
HK2↓,
PFK1↓,
PDK1↓,
chemoP↓, The positive effects of combining propolis with chemotherapeutics include reduced cytotoxicity to peripheral blood leukocytes, liver, and kidney cells.
radioP↑, Their selective nature makes them suitable for protecting normal cells while inducing cell death in cancer cells during chemotherapy or radiotherapy.

2381- PBG,    Chinese Poplar Propolis Inhibits MDA-MB-231 Cell Proliferation in an Inflammatory Microenvironment by Targeting Enzymes of the Glycolytic Pathway
- in-vitro, BC, MDA-MB-231
TumCP↓, Propolis treatment obviously inhibited MDA-MB-231 cell proliferation, migration and invasion, clone forming, and angiogenesis.
TumCMig↓,
TumCI↓,
angioG↓,
TNF-α↓, (TNF-α), interleukin (IL)-1β, and IL-6, as well as NLRP3 inflammasomes, were decreased following propolis treatment when compared with the LPS group.
IL1β↓,
IL6↓,
NLRP3↓,
Glycolysis↓, Moreover, propolis treatment significantly downregulated the levels of key enzymes of glycolysis–hexokinase 2 (HK2), phosphofructokinase (PFK), pyruvate kinase muscle isozyme M2 (PKM2), and lactate dehydrogenase A (LDHA) in MDA-MB-231 cells
HK2↓,
PFK↓,
PKM2↓,
LDHA↓,
ROS↑, propolis increased reactive oxygen species (ROS) levels and decreased mitochondrial membrane potential.
MMP↓,

2382- PBG,    Integration with Transcriptomic and Metabolomic Analyses Reveals the In Vitro Cytotoxic Mechanisms of Chinese Poplar Propolis by Triggering the Glucose Metabolism in Human Hepatocellular Carcinoma Cells
- in-vitro, HCC, HepG2
TumCP↓, Our evidence suggested that CP possesses a great potential to inhibit the proliferation of HepG2 cells by targeting the glucose metabolism.
Glycolysis↓,
GlucoseCon↓, CP effectively restrained glucose consumption and lactic acid production.
lactateProd↓,
GLUT1↓, CP treatment led to a substantial decrease in the mRNA expression levels of key glucose transporters (GLUT1 and GLUT3) and glycolytic enzymes (LDHA, HK2, PKM2, and PFK).
GLUT2↓,
LDHA↓,
HK2↓,
PKM2↓,
PFK↓,
Dose↝, key compounds in CP were screened, and apigenin, pinobanksin, pinocembrin, and galangin were identified as potential active agents against glycolysis.

3252- PBG,    Propolis Extract and Its Bioactive Compounds—From Traditional to Modern Extraction Technologies
- Review, NA, NA
*Inflam↓, extracts act by suppressing similar targets, from pro-inflammatory TNF/NF-κB to the pro-proliferative MAPK/ERK pathway.
*TNF-α↓,
*NF-kB↓,
*MAPK↓,
*ERK↓,
*antiOx↑, they activate similar antioxidant mechanisms of action, like Nrf2-ARE intracellular antioxidant pathway,
*NRF2↑,
*cardioP↑, pinocembrin was shown to be cardioprotective by enhancing glycolysis in the myocardium, which is an essential mechanism of action against ischemic injury of the heart
*Glycolysis↑,
*Ca+2↓, Reducing the content of Ca2+ in mitochondria prevents mitochondrial membrane swelling,
*HO-1↑, CAPE is beneficial as an antioxidant and the inductor of heme oxygenase-1 (HO), Nrf2-regulated gene
*NRF2↑,
*neuroP↑, HO-1 induction results in cardioprotective effects in diabetes [80], neuroprotective in microglial cells

1661- PBG,    Propolis: a natural compound with potential as an adjuvant in cancer therapy - a review of signaling pathways
- Review, Var, NA
JNK↓, downregulating pathways involving Jun-N terminal kinase, ERK1/2, Akt and NF-ƘB
ERK↓,
Akt↓,
NF-kB↓,
FAK↓, inhibiting Wtn2 and FAK, and MAPK and PI3K/AKT signaling pathways
MAPK↓,
PI3K↓,
Akt↓,
P21↑, propolis-induced up-regulation of p21 and p27
p27↑,
TRAIL↑, effects of propolis are mediated through upregulation of TRAIL, Bax, p53, and downregulation of the ERK1/2 signaling
BAX↑,
P53↑,
ERK↓,
ChemoSen↑, effective adjuvant therapy aimed at reducing related side effects associated with chemotherapy and radiotherapy
RadioS↑,
Glycolysis↓, Chinese poplar propolis decreased aerobic glycolysis by reducing the levels of crucial enzymes such as phosphofructokinase (PFK), hexokinase 2 (HK2), pyruvate kinase M2 (PKM2), and lactate dehydrogenase A (LDHA)
HK2↓,
PKM2↓,
LDHA↓,
PFK↓,

1672- PBG,    The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers
- Review, BC, NA
ChemoSen↓, 4 human clinical trials that demonstrated the successful use of propolis in alleviating side effects of chemotherapy and radiotherapy while increasing the quality of life of breast cancer patients, with minimal adverse effects.
RadioS↑,
Inflam↓, immunomodulatory, anti-inflammatory, and anti-cancer properties.
AntiCan↑,
Dose∅, Indonesia: IC50 = 4.57 μg/mL and 10.23 μg/mL
mtDam↑, Poland: propolis induced mitochondrial damage and subsequent apoptosis in breast cancer cells.
Apoptosis?,
OCR↓, China: CAPE inhibited mitochondrial oxygen consumption rate (OCR) by reducing basal, maximal, and spare respiration rate and consequently inhibiting ATP production
ATP↓,
ROS↑, Iran: inducing intracellular ROS production, IC50 = 65-96 μg/mL
ROS↑, Propolis induced mitochondrial dysfunction and lactate dehydrogenase release indicating the occurrence of ROS-associated necrosis.
LDH↓,
TP53↓, Interestingly, a reduced expression of apoptosis-related genes such as TP53, CASP3, BAX, and P21)
Casp3↓,
BAX↓,
P21↓,
ROS↑, CAPE: inducing oxidative stress through upregulation of e-NOS and i-NOS levels
eNOS↑,
iNOS↑,
eff↑, The combination of propolis and mangostin significantly reduced the expression of Wnt2, FAK, and HIF-1α, when compared to propolis or mangostin alone
hTERT↓, downregulation of the mRNA levels of hTERT and cyclin D1
cycD1↓,
eff↑, Synergism with bee venom was observed
eff↑, Statistically significant decrease was found in the MCF-7 cell viability 48 h after applying different combinations of cisplatin (3.12 μg/mL) and curcumin (0.31 μg/mL) and propolis (160 μg/mL)
eff↑, Nanoparticles of chrysin had significantly higher cytotoxicity against MCF-7 cells, compared to chrysin
eff↑, Propolis nanoparticles appeared to increase cytotoxicity of propolis against MCF-7 cells
STAT3↓, Chrysin also inhibited the hypoxia-induced STAT3 tyrosine phosphorylation suggesting the mechanism of action was through STAT3 inhibition.
TIMP1↓, Propolis reduced the expression of TIMP-1, IL-4, and IL-10.
IL4↓,
IL10↓,
OS↑, patients supplemented with propolis had significantly longer median disease free survival time (400 mg, 3 times daily for 10 d pre-, during, and post)
Dose∅, 400 mg, 3 times daily for 10 d pre-, during, and post
ER Stress↑, endoplasmic reticulum stress
ROS↑, upregulating the expression of Annexin A7 (ANXA7), reactive oxygen species (ROS) level, and NF-κB p65 level, while simultaneously reducing the mitochondrial membrane potential.
NF-kB↓,
p65↓,
MMP↓,
TumAuto↑, propolis induced autophagy by increasing the expression of LC3-II and reducing the expression of p62 level
LC3II↑,
p62↓,
TLR4↓, propolis downregulates the inflammatory TLR4
mtDam↑, propolis induced mitochondrial dysfunction and lactate dehydrogenase release indicating ROS-associated necrosis in MDA MB-231cancer cells
LDH↓,
ROS↑,
Glycolysis↓, inhibit the proliferation of MDA-MB-231 cells by targeting key enzymes of glycolysis, namely glycolysis-hexokinase 2 (HK2), phosphofructokinase (PFK), pyruvate kinase muscle isozyme M2 (PKM2), and lactate dehydrogenase A (LDHA),
HK2↓,
PFK↓,
PKM2↓,
LDH↓,
IL10↓, propolis significantly reduced the relative number of CD4+, CD25+, FoxP3+ regulatory T cells expressing IL-10
HDAC8↓, Chrysin, a propolis bioactive compound, inhibits HDAC8
eff↑, combination of propolis and mangostin significantly reduced the expression of Wnt2, FAK, and HIF-1α, when compared to propolis or mangostin alone.
eff↑, Propolis also upregulated the expression of catalase, HTRA2/Omi, FADD, and TRAIL-associated DR5 and DR4 which significantly enhanced the cytotoxicity of doxorubicin in MCF-7 cells
P21↑, Chrysin, a propolis bioactive compound, inhibits HDAC8 and significantly increases the expression of p21 (waf1/cip1) in breast cancer cells, leading to apoptosis.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
Akt↓,3,   angioG↓,2,   AntiCan↑,1,   Apoptosis?,1,   AR↓,1,   ATP↓,1,   mt-ATP↓,1,   BAX↓,1,   BAX↑,1,   BBB↑,1,   BioAv↓,1,   BioAv↑,1,   Casp↑,1,   Casp3↓,1,   CDK2↓,1,   chemoP↓,1,   ChemoSen↓,1,   ChemoSen↑,1,   cMyc↓,1,   COX2↓,1,   CycB↓,1,   cycD1↓,1,   Dose↝,1,   Dose∅,2,   eff↑,8,   EMT↓,1,   eNOS↑,1,   ER Stress↑,2,   ERK↓,2,   FAK↓,1,   p‑FAK↓,1,   GlucoseCon↓,1,   GLUT1↓,2,   GLUT2↓,2,   Glycolysis↓,6,   Half-Life↓,1,   HDAC8↓,1,   Hif1a↓,1,   HK2↓,5,   hTERT↓,1,   IL10↓,2,   IL1β↓,2,   IL2↑,1,   IL4↓,1,   IL6↓,1,   Inflam↓,1,   iNOS↑,1,   JNK↓,1,   Ki-67↓,1,   lactateProd↓,1,   LC3II↑,1,   LDH↓,3,   LDHA↓,4,   lipid-P↑,1,   MAPK↓,1,   MMP↓,2,   MMP9↑,1,   mtDam↑,2,   mTOR↓,1,   NF-kB↓,3,   NLRP3↓,1,   NOTCH1↑,1,   NRF2↓,1,   OCR↓,1,   OS↑,1,   P21↓,1,   P21↑,2,   p27↑,1,   P53↑,1,   p62↓,1,   p65↓,1,   PCNA↓,1,   PD-L1↓,1,   PDK1↓,2,   PDK3↑,1,   PFK↓,4,   PFK1↓,1,   PI3K↓,2,   PKM2↓,5,   radioP↑,1,   RadioS↑,2,   Rho↓,1,   ROCK1↓,1,   ROS↓,1,   ROS↑,9,   STAT3↓,2,   TIMP1↓,1,   TLR4↓,1,   TNF-α↓,2,   TOP1↓,1,   TP53↓,1,   TRAIL↑,1,   TumAuto↑,1,   TumCCA↑,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,2,   TumMeta↓,1,   uPA↓,1,   VEGF↓,1,  
Total Targets: 100

Results for Effect on Normal Cells:
antiOx↑,1,   Ca+2↓,1,   cardioP↑,1,   Catalase↑,1,   ERK↓,1,   Glycolysis↑,1,   GPx↑,1,   hepatoP↑,1,   HO-1↑,1,   Inflam↓,2,   MAPK↓,1,   MDA↓,1,   neuroP↑,2,   NF-kB↓,1,   NRF2↑,2,   ROS↓,1,   SOD↑,1,   TNF-α↓,1,  
Total Targets: 18

Scientific Paper Hit Count for: Glycolysis, Glycolysis
7 Propolis -bee glue
1 Chrysin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:137  Target#:129  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page