condition found
Features: Compound |
Brazilian Green Propolis often considered best • Derived from Baccharis dracunulifolia, this type is rich in artepillin C. • It has been widely researched for its anticancer, anti-inflammatory, and antioxidant properties. -Propolis common researched flavonoids :chrysin, pinocembrin, galangin, pinobanksin(Pinocembrin) -most representative phenolic acids were caffeic acid, p-coumaric acid, and ferulic acid, as well as their derivatives, DMCA and caffeic acid prenyl, benzyl, phenylethyl (CAPE), and cinnamyl esters -One of the most studied active compounds of a poplar-type propolis is caffeic acid phenethyl ester (CAPE) -caffeic acid phenethyl ester (CAPE), galangin, chrysin, nemorosone, propolin G, artepillin C, cardanol, pinocembrin, pinobanksin, chicoric acid, and phenolic acids (caffeic acid, ferulic acid, and coumaric acid), as well as luteolin, apigenin, myricetin, naringenin, kaempferol, quercetin, polysaccharides, tannins, terpenes, sterols, and aldehydes -content highly variable based on location and extraction Two main factors of interest: 1. affects interstitual fluild pH 2. high concentration raises ROS (Reactive Oxygen Species), while low concentration may reduce ROS - Artepillin-C (major phenolic compounds found in Brazilian green propolis (BGP)) - caffeic acid major source Do not combine with 2DG Pathways: -Propolis compounds (e.g., artepillin C, caffeic acid phenethyl ester [CAPE]) can trigger apoptosis (programmed cell death) in cancer cells. -Propolis has been shown to inhibit NF‑κB activation. -Propolis extracts can cause cell cycle arrest at specific checkpoints (e.g., G0/G1 or G2/M phases). -Enhance the body’s antitumor immune responses, for example by activating natural killer (NK) cells and modulating cytokine profiles. -Note half-life no standard, high variablity of content. BioAv poor water solubility, and low oral bioavailability. Pathways: - high concentration may induce ROS production, while low concentrations mya low it. This may apply to both normal and cancer cells. Normal Cells Example. (Also not sure if high level are acheivable in vivo due to bioavailability) - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ --> - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, - Others: PI3K↓, AKT↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
(Also known as Hsp32 and HMOX1) HO-1 is the common abbreviation for the protein (heme oxygenase‑1) produced by the HMOX1 gene. HO-1 is an enzyme that plays a crucial role in various cellular processes, including the breakdown of heme, a toxic molecule. Research has shown that HO-1 is involved in the development and progression of cancer. -widely regarded as having antioxidant and cytoprotective effects -The overall activity of HO‑1 helps to reduce the pro‐oxidant load (by degrading free heme, a pro‑oxidant) and to generate molecules (like bilirubin) that can protect cells from oxidative damage Studies have found that HO-1 is overexpressed in various types of cancer, including lung, breast, colon, and prostate cancer. The overexpression of HO-1 in cancer cells can contribute to their survival and proliferation by: Reducing oxidative stress and inflammation Promoting angiogenesis (the formation of new blood vessels) Inhibiting apoptosis (programmed cell death) Enhancing cell migration and invasion When HO-1 is at a normal level, it mainly exerts an antioxidant effect, and when it is excessively elevated, it causes an accumulation of iron ions. A proper cellular level of HMOX1 plays an antioxidative function to protect cells from ROS toxicity. However, its overexpression has pro-oxidant effects to induce ferroptosis of cells, which is dependent on intracellular iron accumulation and increased ROS content upon excessive activation of HMOX1. -Curcumin Activates the Nrf2 pathway leading to HO‑1 induction; known for its anti‑inflammatory and antioxidant effects. -Resveratrol Induces HO‑1 via activation of SIRT1/Nrf2 signaling; exhibits antioxidant and cardioprotective properties. -Quercetin Activates Nrf2 and related antioxidant pathways; contributes to anti‑oxidative and anti‑inflammatory responses. -EGCG Promotes HO‑1 expression through activation of the Nrf2/ARE pathway; also exhibits anti‑inflammatory and anticancer properties. -Sulforaphane One of the most potent natural HO‑1 inducers; triggers Nrf2 nuclear translocation and upregulates a battery of phase II detoxifying enzymes. -Luteolin Induces HO‑1 via Nrf2 activation; may also exert anti‑inflammatory and neuroprotective effects in various cell models. -Apigenin Has been reported to induce HO‑1 expression partly via the MAPK and Nrf2 pathways; also known for anti‑inflammatory and anticancer activities. |
3250- | PBG,  |   | Allergic Inflammation: Effect of Propolis and Its Flavonoids |
- | Review, | NA, | NA |
3251- | PBG,  |   | The Antioxidant and Anti-Inflammatory Effects of Flavonoids from Propolis via Nrf2 and NF-κB Pathways |
- | Review, | AD, | NA | - | Review, | Diabetic, | NA | - | Review, | Var, | NA | - | in-vitro, | Nor, | H9c2 |
3252- | PBG,  |   | Propolis Extract and Its Bioactive Compounds—From Traditional to Modern Extraction Technologies |
- | Review, | NA, | NA |
3254- | PBG,  |   | Brazilian green propolis water extract up-regulates the early expression level of HO-1 and accelerates Nrf2 after UVA irradiation |
- | in-vitro, | Nor, | NA |
- | in-vitro, | Nor, | HS68 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:137 Target#:597 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid