condition found tbRes List
PBG, Propolis -bee glue: Click to Expand ⟱
Features: Compound
Brazilian Green Propolis often considered best
• Derived from Baccharis dracunulifolia, this type is rich in artepillin C.
• It has been widely researched for its anticancer, anti-inflammatory, and antioxidant properties.
-Propolis common researched flavonoids :chrysin, pinocembrin, galangin, pinobanksin(Pinocembrin)
-most representative phenolic acids were caffeic acid, p-coumaric acid, and ferulic acid, as well as their derivatives, DMCA and caffeic acid prenyl, benzyl, phenylethyl (CAPE), and cinnamyl esters
-One of the most studied active compounds of a poplar-type propolis is caffeic acid phenethyl ester (CAPE)
-caffeic acid phenethyl ester (CAPE), galangin, chrysin, nemorosone, propolin G, artepillin C, cardanol, pinocembrin, pinobanksin, chicoric acid, and phenolic acids (caffeic acid, ferulic acid, and coumaric acid), as well as luteolin, apigenin, myricetin, naringenin, kaempferol, quercetin, polysaccharides, tannins, terpenes, sterols, and aldehydes -content highly variable based on location and extraction
Two main factors of interest:
1. affects interstitual fluild pH
2. high concentration raises ROS (Reactive Oxygen Species), while low concentration may reduce ROS

- Artepillin-C (major phenolic compounds found in Brazilian green propolis (BGP))
- caffeic acid major source

Do not combine with 2DG

Pathways:
-Propolis compounds (e.g., artepillin C, caffeic acid phenethyl ester [CAPE]) can trigger apoptosis (programmed cell death) in cancer cells.
-Propolis has been shown to inhibit NF‑κB activation.
-Propolis extracts can cause cell cycle arrest at specific checkpoints (e.g., G0/G1 or G2/M phases).
-Enhance the body’s antitumor immune responses, for example by activating natural killer (NK) cells and modulating cytokine profiles.

-Note half-life no standard, high variablity of content.
BioAv poor water solubility, and low oral bioavailability.
Pathways:
- high concentration may induce ROS production, while low concentrations mya low it. This may apply to both normal and cancer cells. Normal Cells Example. (Also not sure if high level are acheivable in vivo due to bioavailability)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ -->
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓,
- Others: PI3K↓, AKT↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Hif1a, HIF1α/HIF1a: Click to Expand ⟱
Source:
Type:
Hypoxia-Inducible-Factor 1A (HIF1A gene, HIF1α, HIF-1α protein product)
-Dominantly expressed under hypoxia(low oxygen levels) in solid tumor cells
-HIF1A induces the expression of vascular endothelial growth factor (VEGF)
-High HIF-1α expression is associated with Poor prognosis
-Low HIF-1α expression is associated with Better prognosis

-Functionally, HIF-1α is reported to regulate glycolysis, whilst HIF-2α regulates genes associated with lipoprotein metabolism.
-Cancer cells produce HIF in response to hypoxia in order to generate more VEGF that promote angiogenesis

Key mediators of aerobic glycolysis regulated by HIF-1α.
-GLUT-1 → regulation of the flux of glucose into cells.
-HK2 → catalysis of the first step of glucose metabolism.
-PKM2 → regulation of rate-limiting step of glycolysis.
-Phosphorylation of PDH complex by PDK → blockage of OXPHOS and promotion of aerobic glycolysis.
-LDH (LDHA): Rapid ATP production, conversion of pyruvate to lactate;

HIF-1α Inhibitors:
-Curcumin: disruption of signaling pathways that stabilize HIF-1α (ie downregulate).
-Resveratrol: downregulate HIF-1α protein accumulation under hypoxic conditions.
-EGCG: modulation of upstream signaling pathways, leading to decreased HIF-1α activity.
-Emodin: reduce HIF-1α expression. (under hypoxia).
-Apigenin: inhibit HIF-1α accumulation.


Scientific Papers found: Click to Expand⟱
3259- PBG,    Propolis and its therapeutic effects on renal diseases: A review
- Review, Nor, NA
*Inflam↓, Several mechanisms are involved in the anti-inflammatory effects of propolis including the inhibition of cyclooxygenase (COX) and prostaglandin biosynthesis, free radical scavenging, inhibition of nitric oxide synthesis, the reduction of inflammatory
*COX2↓,
*ROS↓,
*NO↓,
*NF-kB↓, anticancer activity of propolis is ascribed to its ability to inhibit the localization of NF-κB and regulate gene expression
TumCP↓, artepillin C had inhibitory effects on the proliferation of cancer cells and induced instant apoptosis in mice tumor cells.
angioG↓, caffeic acid inhibits the angiogenesis of human kidney tumors implanted in nude mice.
VEGF↓, The decrease in VEGF and diminishment of tumor development are attributed to the inhibition of STAT phosphorylation and reduction of HIF-1-mediated expression of VEGF
STAT↓,
Hif1a↓,
RenoP↑, restored renal tubular function via down-regulation of the Toll-like receptor 4/nuclear factor-kappa B axis, decreasing inflammatory cytokine levels, and macrophage infiltration in renal tissues
TLR4↓,
*MDA↓, rat model of diabetes, propolis decreased malondialdehyde (MDA) and elevated the activity of anti-oxidants such as glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT)
*GSH↑,
*SOD↑,
*Catalase↑,
*toxicity∅, Propolis is safe for patients with renal disease and no adverse effects are reported

2380- PBG,    Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy
- Review, Var, NA
Hif1a↓, Flavonoid components from propolis, as inhibitors of HIF-1, have the ability to regulate critical glycolytic components in cancer cells, including (PKM2), (LDHA), (GLUTs), (HKII), (PFK-1), and (PDK)
Glycolysis↓,
PKM2↓,
LDHA↓,
GLUT2↓,
HK2↓,
PFK1↓,
PDK1↓,
chemoP↓, The positive effects of combining propolis with chemotherapeutics include reduced cytotoxicity to peripheral blood leukocytes, liver, and kidney cells.
radioP↑, Their selective nature makes them suitable for protecting normal cells while inducing cell death in cancer cells during chemotherapy or radiotherapy.

1668- PBG,    Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms
- Review, Var, NA
antiOx↑, Propolis has well-known therapeutic actions including antioxidative, antimicrobial, anti-inflammatory, and anticancer properties.
Inflam↓,
AntiCan↑,
TumCP↓, primarily by inhibiting cancer cell proliferation, inducing apoptosis
Apoptosis↑,
eff↝, Depending on the bee species, geographic location, plant species, and weather conditions, the chemical makeup of propolis fluctuates significantly
MMPs↓, via inhibiting the metastatic protein expression such as MMPs (matrix metalloproteinases)
TNF-α↓, inhibit inflammatory mediators including tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS), cyclooxygenase-1/2 (COX ½), lipoxygenase (LOX), prostaglandins (PGs), and interleukin 1- β (IL1-β)
iNOS↓,
COX2↓,
IL1β↑,
*BioAv↓, Despite the low bioavailability of Artepillin C, a compound with a wide variety of physiological activities
BAX↑, Egyptian propolis extract revealed high apoptotic effects through an increase in BAX (pro-apoptotic protein), caspase-3, and cytochrome-c expression levels, and by a reduction in B-cell lymphoma2 (BCL2)
Casp3↑,
Cyt‑c↑,
Bcl-2↓,
eff↑, enhanced the G0/G1 cell cycle arrest induced by methotrexate
selectivity↑, Thailand propolis on normal and cancerous cells carried out by Umthong et al. found significant differences with the propolis showing cytotoxicity against cancerous but not normal cells.
P53↑, significant increases in the levels of p53 in cells treated with propolis extracts.
ROS↑, propolis induced apoptosis in the SW620 human colorectal cancer cell line through mitochondrial dysfunction caused by high production of reactive oxygen species (ROS) and caspase activation
Casp↑,
eff↑, Galangin- and chrysin-induced apoptosis and mitochondrial membrane potential loss in B16-F1 and A375 melanoma cell lines
ERK↓, Galangin- and chrysin-induced apoptosis and mitochondrial membrane potential loss in B16-F1 and A375 melanoma cell lines
Dose∅, propolis extracts at concentrations of 50 μg/mL significantly increased the levels of TRAIL in cervical tumor cell lines
TRAIL↑,
NF-kB↑, p53, NF-κB, and ROS. These molecules were found to be elevated following exposure of the cells to the alcoholic extract of the propolis
ROS↑,
Dose↑, high concentrations, propolis increased the amounts of integrin β4, ROS, and p53
MMP↓, high expression levels of these molecules, in turn, drove a decrease in mitochondrial membrane potential
DNAdam↑, propolis extract induced DNA fragmentation
TumAuto↑, CAPE, were found to induce autophagy in a breast cancer cell line (MDA-MB-231) through upregulating LC3-II and downregulating p62,
LC3II↑,
p62↓,
EGF↓, downregulation of EGF, HIF-1α, and VEGF
Hif1a↓,
VEGF↓,
TLR4↓, downregulating Toll-like receptor 4 (TLR-4), glycogen synthase kinase 3 beta (GSK3 β), and NF-κB signaling pathways
GSK‐3β↓,
NF-kB↓,
Telomerase↓, Propolis was shown to inhibit the telomerase reverse transcriptase activity in leukemia cells.
ChemoSen↑, Propolis has been shown to increase the activity of existing chemotherapeutic agents and inhibit some of their side effects
ChemoSideEff↓,

1662- PBG,    The immunomodulatory and anticancer properties of propolis
- Review, Var, NA
IL6↓, suppressing the proinflammatory cytokines IL-6 and IL-12 but overexpressing the immune-tolerant cytokine IL-10.
IL12↓,
IL10↑,
CSCs↓, Propolis may Decrease Cancer Stem Cells Population
PAK1↓, artepillin C, a major component in Brazilian green propolis extract, can completely suppress the growth of human neurofibromatosis-associated tumor xenografts in mice through the blocking of oncogenic PAK1 signaling
VEGF↓, royal jelly and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration,
MMP2↓, CAPE from propolis could effectively suppress the adhesion and invasion potential of human hepatocellular carcinoma cells (SK-Hep1) by totally abolishing the expression of MMP-2 and MMP-9.
MMP9↓,
NF-kB↓, It was postulated that such action was related to the inhibition of the NFκB pathway
Hif1a↓, Brazilian green propolis and found that some compounds significantly inhibited the expression of the HIF-1α protein and HIF-1 downstream target genes such as glucose transporter 1, hexokinase 2, and VEGF-A
ChemoSen↑, the group with combined usage of paclitaxel and propolis achieved the lowest tumor weight compared to those with paclitaxel alone, propolis alone, or untreated controls
RadioS↑, complementary therapy to mainstream anticancer chemotherapies or radiotherapies.

1666- PBG,    Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer
- Review, Var, NA
ChemoSen↑, Ingredients from propolis also ”sensitize“ cancer cells to chemotherapeutic agents
TumCCA↑, cell-cycle arrest and attenuation of cancer cells proliferation
TumCP↓,
Apoptosis↑,
antiOx↓, behave as antioxidants against peroxyl and hydroxyl radicals,
ROS↑, whereas prooxidant activity is observed in the presence of Cu2+.
COX2↑, Propolis, as well as flavonoids derived from propolis, such as galangin, is a potent COX-2 inhibitor
ER(estro)↓, Some flavonoids from propolis, such as galangin, genistein, baicalein, hesperetin, naringenin, and quercetin, suppressed the proliferation of an estrogen receptor (ER)
cycA1↓, by suppressing expressions of cyclin A, cyclin B, and Cdk2 and by stopping proliferation at the G2 phase, by increasing levels of p21 and p27 proteins, and through the inhibition of telomerase reverse transcriptase (hTERT),
CycB↓,
CDK2↓,
P21↑,
p27↑,
hTERT↓, leukemia cells, propolis successfully reduced hTERT mRNA expression
HDAC↓, by suppressing expressions of cyclin A, cyclin B, and Cdk2 and by stopping proliferation at the G2 phase, by increasing levels of p21 and p27 proteins, and through the inhibition of telomerase reverse transcriptase (hTERT),
ROS⇅, Mexican propolis, demonstrated both pro- and anti-inflammatory effects, depending on the dose applied
Dose?, Mexican propolis, demonstrated both pro- and anti-inflammatory effects, depending on the dose applied
ROS↓, By scavenging free radicals, chelating metal ions (mainly iron and copper), and stimulating endogenous antioxidant defenses, propolis and its flavonoids directly attenuate the generation of ROS
ROS↑, Romanian propolis [99], exhibits prooxidant properties at high concentrations, by mobilizing endogenous copper ions and DNA-associated copper in cells.
DNAdam↑, propolis, i.e., its polyphenolic components, may induce DNA damage in the presence of transition metal ions.
ChemoSen↑, Algerian propolis + doxorubicin decreased cell viability, prevented cell proliferation and cell cycle progression, induced apoptosis by activating caspase-3 and -9 activities, and increased the accumulation of chemotherapeutic drugs in MDA-MB-231 cel
LOX1↓, propolis components inhibited the LOX pathway
lipid-P↓, Croatian propolis improved psoriatic-like skin lesions induced by irritant agents n-hexyl salicylate or di-n-propyl disulfide by decreasing the extent of lipid peroxidation
NO↑, Taken together, propolis may increase the phagocytic index, NO production, and production of IgG antibodies
Igs↑,
NK cell↑, propolis treatment for 3 days increases the cytotoxic activity of NK cells against murine lymphoma.
MMPs↓, extracts of propolis containing artepillin C and CAPE decreased the formation of new vessels and expression of MMPs and VEGF in various cancer cells
VEGF↓,
Hif1a↓, Brazilian green propolis inhibit the expression of the hypoxia-inducible factor-1 (HIF-1) protein and HIF-1 downstream targets such as glucose transporter 1, hexokinase 2, and VEGF-A
GLUT1↓,
HK2↓,
selectivity↑, Portuguese propolis was selectively toxic against malignant cells.
RadioS↑, propolis increased the lifespan of mice that received the radiotherapy with gamma rays
GlucoseCon↓, Portuguese propolis disturbed the glycolytic metabolism of human colorectal cancer cells, as evidenced by a decrease in glucose consumption and lactate production
lactateProd↓,
eff↓, Furthermore, different pesticides or heavy metals can be found in propolis, which can cause unwanted side effects.
*BioAv↓, Due to the low bioavailability and clinical efficacy of propolis and its flavonoids, their biomedical applications remain limited.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
angioG↓,1,   AntiCan↑,1,   antiOx↓,1,   antiOx↑,1,   Apoptosis↑,2,   BAX↑,1,   Bcl-2↓,1,   Casp↑,1,   Casp3↑,1,   CDK2↓,1,   chemoP↓,1,   ChemoSen↑,4,   ChemoSideEff↓,1,   COX2↓,1,   COX2↑,1,   CSCs↓,1,   cycA1↓,1,   CycB↓,1,   Cyt‑c↑,1,   DNAdam↑,2,   Dose?,1,   Dose↑,1,   Dose∅,1,   eff↓,1,   eff↑,2,   eff↝,1,   EGF↓,1,   ER(estro)↓,1,   ERK↓,1,   GlucoseCon↓,1,   GLUT1↓,1,   GLUT2↓,1,   Glycolysis↓,1,   GSK‐3β↓,1,   HDAC↓,1,   Hif1a↓,5,   HK2↓,2,   hTERT↓,1,   Igs↑,1,   IL10↑,1,   IL12↓,1,   IL1β↑,1,   IL6↓,1,   Inflam↓,1,   iNOS↓,1,   lactateProd↓,1,   LC3II↑,1,   LDHA↓,1,   lipid-P↓,1,   LOX1↓,1,   MMP↓,1,   MMP2↓,1,   MMP9↓,1,   MMPs↓,2,   NF-kB↓,2,   NF-kB↑,1,   NK cell↑,1,   NO↑,1,   P21↑,1,   p27↑,1,   P53↑,1,   p62↓,1,   PAK1↓,1,   PDK1↓,1,   PFK1↓,1,   PKM2↓,1,   radioP↑,1,   RadioS↑,2,   RenoP↑,1,   ROS↓,1,   ROS↑,4,   ROS⇅,1,   selectivity↑,2,   STAT↓,1,   Telomerase↓,1,   TLR4↓,2,   TNF-α↓,1,   TRAIL↑,1,   TumAuto↑,1,   TumCCA↑,1,   TumCP↓,3,   VEGF↓,4,  
Total Targets: 82

Results for Effect on Normal Cells:
BioAv↓,2,   Catalase↑,1,   COX2↓,1,   GSH↑,1,   Inflam↓,1,   MDA↓,1,   NF-kB↓,1,   NO↓,1,   ROS↓,1,   SOD↑,1,   toxicity∅,1,  
Total Targets: 11

Scientific Paper Hit Count for: Hif1a, HIF1α/HIF1a
5 Propolis -bee glue
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:137  Target#:143  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page