condition found
Features: Compound |
Brazilian Green Propolis often considered best • Derived from Baccharis dracunulifolia, this type is rich in artepillin C. • It has been widely researched for its anticancer, anti-inflammatory, and antioxidant properties. -Propolis common researched flavonoids :chrysin, pinocembrin, galangin, pinobanksin(Pinocembrin) -most representative phenolic acids were caffeic acid, p-coumaric acid, and ferulic acid, as well as their derivatives, DMCA and caffeic acid prenyl, benzyl, phenylethyl (CAPE), and cinnamyl esters -One of the most studied active compounds of a poplar-type propolis is caffeic acid phenethyl ester (CAPE) -caffeic acid phenethyl ester (CAPE), galangin, chrysin, nemorosone, propolin G, artepillin C, cardanol, pinocembrin, pinobanksin, chicoric acid, and phenolic acids (caffeic acid, ferulic acid, and coumaric acid), as well as luteolin, apigenin, myricetin, naringenin, kaempferol, quercetin, polysaccharides, tannins, terpenes, sterols, and aldehydes -content highly variable based on location and extraction Two main factors of interest: 1. affects interstitual fluild pH 2. high concentration raises ROS (Reactive Oxygen Species), while low concentration may reduce ROS - Artepillin-C (major phenolic compounds found in Brazilian green propolis (BGP)) - caffeic acid major source Do not combine with 2DG Pathways: -Propolis compounds (e.g., artepillin C, caffeic acid phenethyl ester [CAPE]) can trigger apoptosis (programmed cell death) in cancer cells. -Propolis has been shown to inhibit NF‑κB activation. -Propolis extracts can cause cell cycle arrest at specific checkpoints (e.g., G0/G1 or G2/M phases). -Enhance the body’s antitumor immune responses, for example by activating natural killer (NK) cells and modulating cytokine profiles. -Note half-life no standard, high variablity of content. BioAv poor water solubility, and low oral bioavailability. Pathways: - high concentration may induce ROS production, while low concentrations mya low it. This may apply to both normal and cancer cells. Normal Cells Example. (Also not sure if high level are acheivable in vivo due to bioavailability) - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ --> - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDH">LDHA↓, HK2↓, PFKs↓, PDKs↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, - Others: PI3K↓, AKT↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
LDH is a general term that refers to the enzyme that catalyzes the interconversion of lactate and pyruvate. LDH is a tetrameric enzyme, meaning it is composed of four subunits. LDH refers to the enzyme as a whole, while LDHA specifically refers to the M subunit. Elevated LDHA levels are often associated with poor prognosis and aggressive tumor behavior, similar to elevated LDH levels. However, it's worth noting that some studies have shown that LDHA is a more specific and sensitive biomarker for cancer than total LDH, as it is more closely associated with the Warburg effect and cancer metabolism. Dysregulated LDH activity contributes significantly to cancer development, promoting the Warburg effect (Chen et al., 2007), which involves increased glucose uptake and lactate production, even in the presence of oxygen, to meet the energy demands of rapidly proliferating cancer cells (Warburg and Minami, 1923; Dai et al., 2016b). LDHA overexpression favors pyruvate to lactate conversion, leading to tumor microenvironment acidification and aiding cancer progression and metastasis. Inhibitors: Flavonoids, a group of polyphenols abundant in fruit, vegetables, and medicinal plants, function as LDH inhibitors. • Galloflavin: A flavonoid compound found in the plant Galphimia gracilis, which has been shown to inhibit LDH and have anti-cancer activity. • Fisetin: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity. • Quercetin: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity. • Kaempferol: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity. • Resveratrol: A polyphenol compound found in grapes and other plants, which has been shown to inhibit LDH and have anti-cancer activity. • Curcumin: A polyphenol compound found in turmeric, which has been shown to inhibit LDH and have anti-cancer activity. • Berberine: A compound found in the plant Berberis, which has been shown to inhibit LDH and have anti-cancer activity. • Honokiol: A lignan compound found in the plant Magnolia, which has been shown to inhibit LDH and have anti-cancer activity. • Silibinin: A flavonoid compound found in milk thistle, which has been shown to inhibit LDH and have anti-cancer activity. Others:Ursolic acid, Oleanolic acid, Limonin, Allicin (garlic), Taurine |
1682- | PBG,  |   | Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits |
- | Review, | Var, | NA |
2430- | PBG,  |   | The cytotoxic effects of propolis on breast cancer cells involve PI3K/Akt and ERK1/2 pathways, mitochondrial membrane potential, and reactive oxygen species generation |
- | in-vitro, | BC, | MDA-MB-231 |
1663- | PBG,  |   | Propolis and Their Active Constituents for Chronic Diseases |
- | Review, | Var, | NA |
1672- | PBG,  |   | The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers |
- | Review, | BC, | NA |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:137 Target#:906 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid