condition found tbRes List
PBG, Propolis -bee glue: Click to Expand ⟱
Features: Compound
Brazilian Green Propolis often considered best
• Derived from Baccharis dracunulifolia, this type is rich in artepillin C.
• It has been widely researched for its anticancer, anti-inflammatory, and antioxidant properties.
-Propolis common researched flavonoids :chrysin, pinocembrin, galangin, pinobanksin(Pinocembrin)
-most representative phenolic acids were caffeic acid, p-coumaric acid, and ferulic acid, as well as their derivatives, DMCA and caffeic acid prenyl, benzyl, phenylethyl (CAPE), and cinnamyl esters
-One of the most studied active compounds of a poplar-type propolis is caffeic acid phenethyl ester (CAPE)
-caffeic acid phenethyl ester (CAPE), galangin, chrysin, nemorosone, propolin G, artepillin C, cardanol, pinocembrin, pinobanksin, chicoric acid, and phenolic acids (caffeic acid, ferulic acid, and coumaric acid), as well as luteolin, apigenin, myricetin, naringenin, kaempferol, quercetin, polysaccharides, tannins, terpenes, sterols, and aldehydes -content highly variable based on location and extraction
Two main factors of interest:
1. affects interstitual fluild pH
2. high concentration raises ROS (Reactive Oxygen Species), while low concentration may reduce ROS

- Artepillin-C (major phenolic compounds found in Brazilian green propolis (BGP))
- caffeic acid major source

Do not combine with 2DG

Pathways:
-Propolis compounds (e.g., artepillin C, caffeic acid phenethyl ester [CAPE]) can trigger apoptosis (programmed cell death) in cancer cells.
-Propolis has been shown to inhibit NF‑κB activation.
-Propolis extracts can cause cell cycle arrest at specific checkpoints (e.g., G0/G1 or G2/M phases).
-Enhance the body’s antitumor immune responses, for example by activating natural killer (NK) cells and modulating cytokine profiles.

-Note half-life no standard, high variablity of content.
BioAv poor water solubility, and low oral bioavailability.
Pathways:
- high concentration may induce ROS production, while low concentrations mya low it. This may apply to both normal and cancer cells. Normal Cells Example. (Also not sure if high level are acheivable in vivo due to bioavailability)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ -->
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH, LDH">LDHA↓, HK2↓, PFKs↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓,
- Others: PI3K↓, AKT↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


LDH, Lactate Dehydrogenase: Click to Expand ⟱
Source:
Type:
LDH is a general term that refers to the enzyme that catalyzes the interconversion of lactate and pyruvate. LDH is a tetrameric enzyme, meaning it is composed of four subunits.
LDH refers to the enzyme as a whole, while LDHA specifically refers to the M subunit. Elevated LDHA levels are often associated with poor prognosis and aggressive tumor behavior, similar to elevated LDH levels.

However, it's worth noting that some studies have shown that LDHA is a more specific and sensitive biomarker for cancer than total LDH, as it is more closely associated with the Warburg effect and cancer metabolism.

Dysregulated LDH activity contributes significantly to cancer development, promoting the Warburg effect (Chen et al., 2007), which involves increased glucose uptake and lactate production, even in the presence of oxygen, to meet the energy demands of rapidly proliferating cancer cells (Warburg and Minami, 1923; Dai et al., 2016b). LDHA overexpression favors pyruvate to lactate conversion, leading to tumor microenvironment acidification and aiding cancer progression and metastasis.

Inhibitors:
Flavonoids, a group of polyphenols abundant in fruit, vegetables, and medicinal plants, function as LDH inhibitors.

• Galloflavin: A flavonoid compound found in the plant Galphimia gracilis, which has been shown to inhibit LDH and have anti-cancer activity.
• Fisetin: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity.
• Quercetin: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity.
• Kaempferol: A flavonoid compound found in various fruits and vegetables, which has been shown to inhibit LDH and have anti-cancer activity.
• Resveratrol: A polyphenol compound found in grapes and other plants, which has been shown to inhibit LDH and have anti-cancer activity.
• Curcumin: A polyphenol compound found in turmeric, which has been shown to inhibit LDH and have anti-cancer activity.
• Berberine: A compound found in the plant Berberis, which has been shown to inhibit LDH and have anti-cancer activity.
• Honokiol: A lignan compound found in the plant Magnolia, which has been shown to inhibit LDH and have anti-cancer activity.
• Silibinin: A flavonoid compound found in milk thistle, which has been shown to inhibit LDH and have anti-cancer activity.
Others:Ursolic acid, Oleanolic acid, Limonin, Allicin (garlic), Taurine


Scientific Papers found: Click to Expand⟱
1682- PBG,    Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits
- Review, Var, NA
i-LDH↓, cytotoxic activities of Tualang honey in human breast cancer cells were demonstrated by elevated secretion of lactate dehydrogenase (LDH)
Akt↓, figure 2
MAPK↓, figure 2
NF-kB↓, figure 2
IL1β↓, figure 2
IL6↓, figure 2
TNF-α↓, figure 2
iNOS↓, figure 2
COX2↓, figure 2
ROS↓, figure 2
Bcl-2↓, figure 2
PARP↓, figure 2
P53↑, figure 2
BAX↑, figure 2
Casp3↑, figure 2
TumCCA↑, Several components of honey such as chrysin, quercetin, and kaempferol have been shown to arrest cell cycle at various phases such as G0/G1, G1, and G2/M
Cyt‑c↑, hese stimuli cause several proteins located within the intermembrane space (IMS) of the mitochondria, such as cytochrome c, to be released
MMP↓, Honey induces MOMP in cancer cell lines by decreasing the mitochondrial membrane potential
eff↑, amplifying the apoptotic effect of tamoxifen by intensified depolarization of the mitochondrial membrane.

2430- PBG,    The cytotoxic effects of propolis on breast cancer cells involve PI3K/Akt and ERK1/2 pathways, mitochondrial membrane potential, and reactive oxygen species generation
- in-vitro, BC, MDA-MB-231
TumCP↓, CP extract exhibited antiproliferative and cytotoxic effects on MDA MB-231 cells, what may be probably related to PI3K/Akt and ERK1/2 pathways.
TP53↓, decreased expression of apoptosis-related genes (TP53, CASP3, BAX and P21)
Casp3↓,
BAX↓,
P21↓,
ROS↑, These results suggested that CP cytotoxic effects on MDA MB-231 cells might be associated with the intracellular ROS production
eff↓, CP-induced ROS generation was reduced after cotreatment with the antioxidant NAC, which increased the percentage of viable cells, suggesting that CP-induced necrotic-related cell death could be associated with ROS production
MMP↓, Necrosis death is associated with mitochondrial dysfunction and our propolis sample reduced the MMP and increased LDH levels.
LDH↑,
ATP↓, rupture of mitochondrial membrane, loss of adenosine triphosphate (ATP),
Ca+2↑, excessive ROS production, intracellular [Ca+2] elevation, osmotic shock,

1663- PBG,    Propolis and Their Active Constituents for Chronic Diseases
- Review, Var, NA
NF-kB↓, CAPE (a bioactive constituent of propolis) was reported to have anticancer properties by inhibiting NF-κB, caspase and Fas signaling activation in MCF-7 cells
Casp↓,
Fas↓,
DNAdam↑, DNA fragmentation, CCAAT/enhancer binding protein homologous protein expression and caspase-3 activity
Casp3↑,
P53↝, Chinese propolis (EECP) and its bioactive constituents mainly persist due to regulation of the annexin A7 and p53 proteins, mitochondrial membrane potential and ROSs, as well as that inhibition of NF-κB causes apoptosis in cancer cells
MMP↝,
ROS↑, Herrera et al. and reported on the MDA-MB 231 tumor cell line, and the inhibitory effect of propolis was proposed to occur through the induction of mitochondrial dysfunction, resulting in ROS-associated necrosis
mtDam↑,
Dose?, A concentration of 100 μg/mL was able to attain 71% cytotoxicity
angioG↓, negative effect on angiogenesis, proliferation and migration of tumor cells. A concentration of 25–200 μg/mL noticeably inhibited the metastasis of breast cancer
TumCP↓,
TumCMig↓,
BAX↑,
selectivity↑, Negligible effect in fibroblasts
MMP↓, Cuban: Disturbed the mitochondrial potential, lactate dehydrogenase released, production of ROS and cell migration
LDH↓,
IL6↓, Chinese: Decreased cell tube generation, IL-6, IL-1β, TNF-α-like inflammatory mediators, glycolytic enzymes and mitochondrial potential. Promoted ROS generation
IL1β↓,
TNF-α↓,

1672- PBG,    The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers
- Review, BC, NA
ChemoSen↓, 4 human clinical trials that demonstrated the successful use of propolis in alleviating side effects of chemotherapy and radiotherapy while increasing the quality of life of breast cancer patients, with minimal adverse effects.
RadioS↑,
Inflam↓, immunomodulatory, anti-inflammatory, and anti-cancer properties.
AntiCan↑,
Dose∅, Indonesia: IC50 = 4.57 μg/mL and 10.23 μg/mL
mtDam↑, Poland: propolis induced mitochondrial damage and subsequent apoptosis in breast cancer cells.
Apoptosis?,
OCR↓, China: CAPE inhibited mitochondrial oxygen consumption rate (OCR) by reducing basal, maximal, and spare respiration rate and consequently inhibiting ATP production
ATP↓,
ROS↑, Iran: inducing intracellular ROS production, IC50 = 65-96 μg/mL
ROS↑, Propolis induced mitochondrial dysfunction and lactate dehydrogenase release indicating the occurrence of ROS-associated necrosis.
LDH↓,
TP53↓, Interestingly, a reduced expression of apoptosis-related genes such as TP53, CASP3, BAX, and P21)
Casp3↓,
BAX↓,
P21↓,
ROS↑, CAPE: inducing oxidative stress through upregulation of e-NOS and i-NOS levels
eNOS↑,
iNOS↑,
eff↑, The combination of propolis and mangostin significantly reduced the expression of Wnt2, FAK, and HIF-1α, when compared to propolis or mangostin alone
hTERT↓, downregulation of the mRNA levels of hTERT and cyclin D1
cycD1↓,
eff↑, Synergism with bee venom was observed
eff↑, Statistically significant decrease was found in the MCF-7 cell viability 48 h after applying different combinations of cisplatin (3.12 μg/mL) and curcumin (0.31 μg/mL) and propolis (160 μg/mL)
eff↑, Nanoparticles of chrysin had significantly higher cytotoxicity against MCF-7 cells, compared to chrysin
eff↑, Propolis nanoparticles appeared to increase cytotoxicity of propolis against MCF-7 cells
STAT3↓, Chrysin also inhibited the hypoxia-induced STAT3 tyrosine phosphorylation suggesting the mechanism of action was through STAT3 inhibition.
TIMP1↓, Propolis reduced the expression of TIMP-1, IL-4, and IL-10.
IL4↓,
IL10↓,
OS↑, patients supplemented with propolis had significantly longer median disease free survival time (400 mg, 3 times daily for 10 d pre-, during, and post)
Dose∅, 400 mg, 3 times daily for 10 d pre-, during, and post
ER Stress↑, endoplasmic reticulum stress
ROS↑, upregulating the expression of Annexin A7 (ANXA7), reactive oxygen species (ROS) level, and NF-κB p65 level, while simultaneously reducing the mitochondrial membrane potential.
NF-kB↓,
p65↓,
MMP↓,
TumAuto↑, propolis induced autophagy by increasing the expression of LC3-II and reducing the expression of p62 level
LC3II↑,
p62↓,
TLR4↓, propolis downregulates the inflammatory TLR4
mtDam↑, propolis induced mitochondrial dysfunction and lactate dehydrogenase release indicating ROS-associated necrosis in MDA MB-231cancer cells
LDH↓,
ROS↑,
Glycolysis↓, inhibit the proliferation of MDA-MB-231 cells by targeting key enzymes of glycolysis, namely glycolysis-hexokinase 2 (HK2), phosphofructokinase (PFK), pyruvate kinase muscle isozyme M2 (PKM2), and lactate dehydrogenase A (LDHA),
HK2↓,
PFK↓,
PKM2↓,
LDH↓,
IL10↓, propolis significantly reduced the relative number of CD4+, CD25+, FoxP3+ regulatory T cells expressing IL-10
HDAC8↓, Chrysin, a propolis bioactive compound, inhibits HDAC8
eff↑, combination of propolis and mangostin significantly reduced the expression of Wnt2, FAK, and HIF-1α, when compared to propolis or mangostin alone.
eff↑, Propolis also upregulated the expression of catalase, HTRA2/Omi, FADD, and TRAIL-associated DR5 and DR4 which significantly enhanced the cytotoxicity of doxorubicin in MCF-7 cells
P21↑, Chrysin, a propolis bioactive compound, inhibits HDAC8 and significantly increases the expression of p21 (waf1/cip1) in breast cancer cells, leading to apoptosis.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   angioG↓,1,   AntiCan↑,1,   Apoptosis?,1,   ATP↓,2,   BAX↓,2,   BAX↑,2,   Bcl-2↓,1,   Ca+2↑,1,   Casp↓,1,   Casp3↓,2,   Casp3↑,2,   ChemoSen↓,1,   COX2↓,1,   cycD1↓,1,   Cyt‑c↑,1,   DNAdam↑,1,   Dose?,1,   Dose∅,2,   eff↓,1,   eff↑,8,   eNOS↑,1,   ER Stress↑,1,   Fas↓,1,   Glycolysis↓,1,   HDAC8↓,1,   HK2↓,1,   hTERT↓,1,   IL10↓,2,   IL1β↓,2,   IL4↓,1,   IL6↓,2,   Inflam↓,1,   iNOS↓,1,   iNOS↑,1,   LC3II↑,1,   LDH↓,4,   LDH↑,1,   i-LDH↓,1,   MAPK↓,1,   MMP↓,4,   MMP↝,1,   mtDam↑,3,   NF-kB↓,3,   OCR↓,1,   OS↑,1,   P21↓,2,   P21↑,1,   P53↑,1,   P53↝,1,   p62↓,1,   p65↓,1,   PARP↓,1,   PFK↓,1,   PKM2↓,1,   RadioS↑,1,   ROS↓,1,   ROS↑,7,   selectivity↑,1,   STAT3↓,1,   TIMP1↓,1,   TLR4↓,1,   TNF-α↓,2,   TP53↓,2,   TumAuto↑,1,   TumCCA↑,1,   TumCMig↓,1,   TumCP↓,2,  
Total Targets: 68

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: LDH, Lactate Dehydrogenase
4 Propolis -bee glue
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:137  Target#:906  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page