condition found tbRes List
PBG, Propolis -bee glue: Click to Expand ⟱
Features: Compound
Brazilian Green Propolis often considered best
• Derived from Baccharis dracunulifolia, this type is rich in artepillin C.
• It has been widely researched for its anticancer, anti-inflammatory, and antioxidant properties.
-Propolis common researched flavonoids :chrysin, pinocembrin, galangin, pinobanksin(Pinocembrin)
-most representative phenolic acids were caffeic acid, p-coumaric acid, and ferulic acid, as well as their derivatives, DMCA and caffeic acid prenyl, benzyl, phenylethyl (CAPE), and cinnamyl esters
-One of the most studied active compounds of a poplar-type propolis is caffeic acid phenethyl ester (CAPE)
-caffeic acid phenethyl ester (CAPE), galangin, chrysin, nemorosone, propolin G, artepillin C, cardanol, pinocembrin, pinobanksin, chicoric acid, and phenolic acids (caffeic acid, ferulic acid, and coumaric acid), as well as luteolin, apigenin, myricetin, naringenin, kaempferol, quercetin, polysaccharides, tannins, terpenes, sterols, and aldehydes -content highly variable based on location and extraction
Two main factors of interest:
1. affects interstitual fluild pH
2. high concentration raises ROS (Reactive Oxygen Species), while low concentration may reduce ROS

- Artepillin-C (major phenolic compounds found in Brazilian green propolis (BGP))
- caffeic acid major source

Do not combine with 2DG

Pathways:
-Propolis compounds (e.g., artepillin C, caffeic acid phenethyl ester [CAPE]) can trigger apoptosis (programmed cell death) in cancer cells.
-Propolis has been shown to inhibit NF‑κB activation.
-Propolis extracts can cause cell cycle arrest at specific checkpoints (e.g., G0/G1 or G2/M phases).
-Enhance the body’s antitumor immune responses, for example by activating natural killer (NK) cells and modulating cytokine profiles.

-Note half-life no standard, high variablity of content.
BioAv poor water solubility, and low oral bioavailability.
Pathways:
- high concentration may induce ROS production, while low concentrations mya low it. This may apply to both normal and cancer cells. Normal Cells Example. (Also not sure if high level are acheivable in vivo due to bioavailability)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ -->
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓,
- Others: PI3K↓, AKT↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


CDK6, Cyclin-dependent kinase 6: Click to Expand ⟱
Source:
Type:
Cyclin-dependent kinase 6 (CDK6) is another important regulator of the cell cycle, particularly involved in the transition from the G1 phase to the S phase.
CDK6 is frequently overexpressed in various cancers, and its expression levels can serve as a prognostic marker. Targeting CDK6 with specific inhibitors, such as palbociclib (which also targets CDK4), has shown promise in clinical settings, particularly in hormone receptor-positive breast cancer.


Scientific Papers found: Click to Expand⟱
1651- CA,  PBG,    Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer
- Review, Var, NA
Apoptosis↑,
TumCCA↓, CAPE (1-80 uM) can stimulate apoptosis and cell cycle arrest (G1 phase
TumCMig↓,
TumMeta↓,
ChemoSen↑,
eff↑, Nanoparticles promote therapeutic effect of CA and CAPE in reducing cancer cell malignancy.
eff↑, improve capacity of CA and CAPE in cancer suppression, it has been co-administered with other anti-tumor compounds such as gallic acid
eff↓, Currently, solvent extraction is utilized by methanol and ethyl acetate combination at high temperatures. However, a low amount of CA is yielded via this pathway
eff↝, Decyl CA (DCA) is a novel derivative of CA but its role in affecting colorectal cancer has not been completely understood.
Dose∅, The CAPE administration (0-60 uM) induces both autophagy and apoptosis in C6 glioma cells.
AMPK↑, CAPE induces autophagy via AMPK upregulation.
p62↓, CAPE can induce autophagy via p62 down-regulation and LC3-II upregulation
LC3II↑,
Ca+2↑, CA (0-1000 uM) enhances Ca2+ accumulation in cells in a concentration-dependent manner
Bax:Bcl2↑, CA can promote Bax/Bcl-2 ratio i
CDK4↑, The administration of CAPE (1–80 μM) can stimulate apoptosis and cell cycle arrest (G1 phase) via upregulation of Bax, CDK4, CDK6 and Rb
CDK6↑,
RB1↑,
EMT↓, CAPE has demonstrated high potential in inhibiting EMT in nasopharyngeal caner via enhancing E-cadherin levels, and reducing vimentin and β-catenin levels.
E-cadherin↑,
Vim↓,
β-catenin/ZEB1↓,
NF-kB↓,
angioG↑, CAPE (0.01-1ug/ml) inhibited angiogenesis via VEGF down-regulation
VEGF↓,
TSP-1↑, and furthermore, CAPE is capable of increasing TSP-1 levels
MMP9↓, CAPE was found to reduce MMP-9 expression
MMP2↓, CAPE can also down-regulate MMP-2
ChemoSen↑, role of CA and its derivatives in enhancing therapy sensitivity of cancer cells.
eff↑, CA administration (100 uM) alone or its combination with metformin (10 mM) can induce AMPK signaling
ROS↑, CA can promote ROS levels to induce cell death in human squamous cell carcinoma
CSCs↓, CA can reduce self-renewal capacity of CSCs and their migratory ability in vitro and in vivo.
Fas↑, CAPE (0-100 uM) is capable of inducing Fas signaling to promote p53 expression, leading to apoptotic cell death via Bax and caspase activation
P53↑,
BAX↑,
Casp↑,
β-catenin/ZEB1↓, anti-tumor activity of CAPE is mediated via reducing β-catenin levels
NDRG1↑, CAPE (30 uM) can promote NDRG1 expression via MAPK activation and down-regulation of STAT3
STAT3↓,
MAPK↑, CAPE stimulates mitogen-activated protein kinase (MAPK) and ERK
ERK↑,
eff↑, Res, thymoquinone and CAPE mediate lung tumor cell death via Bax upregulation and Bcl-2 down-regulation.
eff↑, co-administration of CA (100 μM) and metformin (10 mM) is of interest in cervical squamous cell carcinoma therapy.
eff↑, in addition to CA, propolis contains other agents such as chrysin, p-coumaric acid and ferulic acid that are beneficial in tumor suppression.

3257- PBG,    The Potential Use of Propolis as a Primary or an Adjunctive Therapy in Respiratory Tract-Related Diseases and Disorders: A Systematic Scoping Review
- Review, Var, NA
CDK4↓, CAPE also induces G1 phase cell arrest by lowering the expression of CDK4, CDK6, Rb, and p-Rb. M
CDK6↓,
pRB↓,
ROS↓, Artepillin C, a bioactive component of Brazilian green propolis, reduces oxidative damage markers, namely 4-HNE-modified proteins, 8-OHdG, malonaldehyde, and thiobarbituric acid reactive substances in lung tissues with pulmonary adenocarcinoma
TumCCA↑, Propolin, a novel component of prenylflavanones in Taiwanese propolis, was demonstrated to have anti-cancer properties. Propolin H induces cell arrest at G1 phase and upregulates the expression of p21
P21↑,
PI3K↓, Propolin C also inhibits PI3K/Akt and ERK-mediated epithelial-to-mesenchymal transition by upregulating E-cadherin (epithelial cell marker) and downregulating vimentin
Akt↓,
EMT↓,
E-cadherin↑,
Vim↓,
*COX2↓, bioactive compounds such as CAPE, galangin significantly reduce the activity of lung cyclooxygenase (COX) and myeloperoxidase (MPO), and malonaldehyde (MDA), TNF-α, and IL-6 levels, while increasing the activity of catalase (CAT) and SOD
*MPO↓,
*MDA↓,
*TNF-α↓,
*IL6↓,
*Catalase↑,
*SOD↑,
*AST↓, Chrysin also reduces the expression of oxidative and inflammatory markers such as aspartate transaminase (AST), alanine aminotransferase (ALT), IL-1β, IL-10, TNF-α, and MDA levels and increases the antioxidant parameters such as SOD, CAT, and GPx
*ALAT↓,
*IL1β↓,
*IL10↓,
*GPx↓,
*TLR4↓, propolis also inhibits the expression of Toll-like receptor 4 (TLR4), macrophage infiltration, MPO activity, and apoptosis of lung tissues in septic animals
*Sepsis↓,
*IFN-γ↑, CAPE also significantly increases IFN-γ
*GSH↑, propolis significantly increased the level of GSH and the histological appearances of propolis-treated bleomycin-induced pulmonary fibrosis rats.
*NRF2↑, CAPE significantly increases the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2)
*α-SMA↓, propolis significantly inhibits the expression of α- SMA, collagen fibers, and TGF-1β.
*TGF-β↓,
*IL5↓, Propolis also inhibits the expression of inflammatory cytokines and chemokines such as TNF-α, IL-5, IL-6, IL-8, IL-10, NF-kB, IFN-γ, PGF2a, and PGE2.
*IL6↓,
*IL8↓,
*PGE2↓,
*NF-kB↓,
*MMP9↓, downregulating the expression of TGF-1β, ICAM-1, α-SMA, MMP-9, IgE, and IgG1.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   AMPK↑,1,   angioG↑,1,   Apoptosis↑,1,   BAX↑,1,   Bax:Bcl2↑,1,   Ca+2↑,1,   Casp↑,1,   CDK4↓,1,   CDK4↑,1,   CDK6↓,1,   CDK6↑,1,   ChemoSen↑,2,   CSCs↓,1,   Dose∅,1,   E-cadherin↑,2,   eff↓,1,   eff↑,6,   eff↝,1,   EMT↓,2,   ERK↑,1,   Fas↑,1,   LC3II↑,1,   MAPK↑,1,   MMP2↓,1,   MMP9↓,1,   NDRG1↑,1,   NF-kB↓,1,   P21↑,1,   P53↑,1,   p62↓,1,   PI3K↓,1,   pRB↓,1,   RB1↑,1,   ROS↓,1,   ROS↑,1,   STAT3↓,1,   TSP-1↑,1,   TumCCA↓,1,   TumCCA↑,1,   TumCMig↓,1,   TumMeta↓,1,   VEGF↓,1,   Vim↓,2,   β-catenin/ZEB1↓,2,  
Total Targets: 45

Results for Effect on Normal Cells:
ALAT↓,1,   AST↓,1,   Catalase↑,1,   COX2↓,1,   GPx↓,1,   GSH↑,1,   IFN-γ↑,1,   IL10↓,1,   IL1β↓,1,   IL5↓,1,   IL6↓,2,   IL8↓,1,   MDA↓,1,   MMP9↓,1,   MPO↓,1,   NF-kB↓,1,   NRF2↑,1,   PGE2↓,1,   Sepsis↓,1,   SOD↑,1,   TGF-β↓,1,   TLR4↓,1,   TNF-α↓,1,   α-SMA↓,1,  
Total Targets: 24

Scientific Paper Hit Count for: CDK6, Cyclin-dependent kinase 6
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:137  Target#:895  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page