condition found tbRes List
PBG, Propolis -bee glue: Click to Expand ⟱
Features: Compound
Brazilian Green Propolis often considered best
• Derived from Baccharis dracunulifolia, this type is rich in artepillin C.
• It has been widely researched for its anticancer, anti-inflammatory, and antioxidant properties.
-Propolis common researched flavonoids :chrysin, pinocembrin, galangin, pinobanksin(Pinocembrin)
-most representative phenolic acids were caffeic acid, p-coumaric acid, and ferulic acid, as well as their derivatives, DMCA and caffeic acid prenyl, benzyl, phenylethyl (CAPE), and cinnamyl esters
-One of the most studied active compounds of a poplar-type propolis is caffeic acid phenethyl ester (CAPE)
-caffeic acid phenethyl ester (CAPE), galangin, chrysin, nemorosone, propolin G, artepillin C, cardanol, pinocembrin, pinobanksin, chicoric acid, and phenolic acids (caffeic acid, ferulic acid, and coumaric acid), as well as luteolin, apigenin, myricetin, naringenin, kaempferol, quercetin, polysaccharides, tannins, terpenes, sterols, and aldehydes -content highly variable based on location and extraction
Two main factors of interest:
1. affects interstitual fluild pH
2. high concentration raises ROS (Reactive Oxygen Species), while low concentration may reduce ROS

- Artepillin-C (major phenolic compounds found in Brazilian green propolis (BGP))
- caffeic acid major source

Do not combine with 2DG

Pathways:
-Propolis compounds (e.g., artepillin C, caffeic acid phenethyl ester [CAPE]) can trigger apoptosis (programmed cell death) in cancer cells.
-Propolis has been shown to inhibit NF‑κB activation.
-Propolis extracts can cause cell cycle arrest at specific checkpoints (e.g., G0/G1 or G2/M phases).
-Enhance the body’s antitumor immune responses, for example by activating natural killer (NK) cells and modulating cytokine profiles.

-Note half-life no standard, high variablity of content.
BioAv poor water solubility, and low oral bioavailability.
Pathways:
- high concentration may induce ROS production, while low concentrations mya low it. This may apply to both normal and cancer cells. Normal Cells Example. (Also not sure if high level are acheivable in vivo due to bioavailability)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ -->
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, GRP78↑, GlucoseCon
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓,
- Others: PI3K↓, AKT↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


GlucoseCon, Glucose Consumption: Click to Expand ⟱
Source:
Type:
Glucose consumption is often elevated in cancer cells due to an increased reliance on glycolysis for energy production, even in the presence of oxygen. This phenomenon, known as the Warburg effect, is a metabolic shift that allows cancer cells to rapidly proliferate and survive in nutrient-poor environments.

The increased glucose consumption in cancer cells can be detected using positron emission tomography (PET) scans, which measure the uptake of a glucose analog labeled with a radioactive tracer.


Scientific Papers found: Click to Expand⟱
2382- PBG,    Integration with Transcriptomic and Metabolomic Analyses Reveals the In Vitro Cytotoxic Mechanisms of Chinese Poplar Propolis by Triggering the Glucose Metabolism in Human Hepatocellular Carcinoma Cells
- in-vitro, HCC, HepG2
TumCP↓, Our evidence suggested that CP possesses a great potential to inhibit the proliferation of HepG2 cells by targeting the glucose metabolism.
Glycolysis↓,
GlucoseCon↓, CP effectively restrained glucose consumption and lactic acid production.
lactateProd↓,
GLUT1↓, CP treatment led to a substantial decrease in the mRNA expression levels of key glucose transporters (GLUT1 and GLUT3) and glycolytic enzymes (LDHA, HK2, PKM2, and PFK).
GLUT2↓,
LDHA↓,
HK2↓,
PKM2↓,
PFK↓,
Dose↝, key compounds in CP were screened, and apigenin, pinobanksin, pinocembrin, and galangin were identified as potential active agents against glycolysis.

1666- PBG,    Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer
- Review, Var, NA
ChemoSen↑, Ingredients from propolis also ”sensitize“ cancer cells to chemotherapeutic agents
TumCCA↑, cell-cycle arrest and attenuation of cancer cells proliferation
TumCP↓,
Apoptosis↑,
antiOx↓, behave as antioxidants against peroxyl and hydroxyl radicals,
ROS↑, whereas prooxidant activity is observed in the presence of Cu2+.
COX2↑, Propolis, as well as flavonoids derived from propolis, such as galangin, is a potent COX-2 inhibitor
ER(estro)↓, Some flavonoids from propolis, such as galangin, genistein, baicalein, hesperetin, naringenin, and quercetin, suppressed the proliferation of an estrogen receptor (ER)
cycA1↓, by suppressing expressions of cyclin A, cyclin B, and Cdk2 and by stopping proliferation at the G2 phase, by increasing levels of p21 and p27 proteins, and through the inhibition of telomerase reverse transcriptase (hTERT),
CycB↓,
CDK2↓,
P21↑,
p27↑,
hTERT↓, leukemia cells, propolis successfully reduced hTERT mRNA expression
HDAC↓, by suppressing expressions of cyclin A, cyclin B, and Cdk2 and by stopping proliferation at the G2 phase, by increasing levels of p21 and p27 proteins, and through the inhibition of telomerase reverse transcriptase (hTERT),
ROS⇅, Mexican propolis, demonstrated both pro- and anti-inflammatory effects, depending on the dose applied
Dose?, Mexican propolis, demonstrated both pro- and anti-inflammatory effects, depending on the dose applied
ROS↓, By scavenging free radicals, chelating metal ions (mainly iron and copper), and stimulating endogenous antioxidant defenses, propolis and its flavonoids directly attenuate the generation of ROS
ROS↑, Romanian propolis [99], exhibits prooxidant properties at high concentrations, by mobilizing endogenous copper ions and DNA-associated copper in cells.
DNAdam↑, propolis, i.e., its polyphenolic components, may induce DNA damage in the presence of transition metal ions.
ChemoSen↑, Algerian propolis + doxorubicin decreased cell viability, prevented cell proliferation and cell cycle progression, induced apoptosis by activating caspase-3 and -9 activities, and increased the accumulation of chemotherapeutic drugs in MDA-MB-231 cel
LOX1↓, propolis components inhibited the LOX pathway
lipid-P↓, Croatian propolis improved psoriatic-like skin lesions induced by irritant agents n-hexyl salicylate or di-n-propyl disulfide by decreasing the extent of lipid peroxidation
NO↑, Taken together, propolis may increase the phagocytic index, NO production, and production of IgG antibodies
Igs↑,
NK cell↑, propolis treatment for 3 days increases the cytotoxic activity of NK cells against murine lymphoma.
MMPs↓, extracts of propolis containing artepillin C and CAPE decreased the formation of new vessels and expression of MMPs and VEGF in various cancer cells
VEGF↓,
Hif1a↓, Brazilian green propolis inhibit the expression of the hypoxia-inducible factor-1 (HIF-1) protein and HIF-1 downstream targets such as glucose transporter 1, hexokinase 2, and VEGF-A
GLUT1↓,
HK2↓,
selectivity↑, Portuguese propolis was selectively toxic against malignant cells.
RadioS↑, propolis increased the lifespan of mice that received the radiotherapy with gamma rays
GlucoseCon↓, Portuguese propolis disturbed the glycolytic metabolism of human colorectal cancer cells, as evidenced by a decrease in glucose consumption and lactate production
lactateProd↓,
eff↓, Furthermore, different pesticides or heavy metals can be found in propolis, which can cause unwanted side effects.
*BioAv↓, Due to the low bioavailability and clinical efficacy of propolis and its flavonoids, their biomedical applications remain limited.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:
antiOx↓,1,   Apoptosis↑,1,   CDK2↓,1,   ChemoSen↑,2,   COX2↑,1,   cycA1↓,1,   CycB↓,1,   DNAdam↑,1,   Dose?,1,   Dose↝,1,   eff↓,1,   ER(estro)↓,1,   GlucoseCon↓,2,   GLUT1↓,2,   GLUT2↓,1,   Glycolysis↓,1,   HDAC↓,1,   Hif1a↓,1,   HK2↓,2,   hTERT↓,1,   Igs↑,1,   lactateProd↓,2,   LDHA↓,1,   lipid-P↓,1,   LOX1↓,1,   MMPs↓,1,   NK cell↑,1,   NO↑,1,   P21↑,1,   p27↑,1,   PFK↓,1,   PKM2↓,1,   RadioS↑,1,   ROS↓,1,   ROS↑,2,   ROS⇅,1,   selectivity↑,1,   TumCCA↑,1,   TumCP↓,2,   VEGF↓,1,  
Total Targets: 40

Results for Effect on Normal Cells:
BioAv↓,1,  
Total Targets: 1

Scientific Paper Hit Count for: GlucoseCon, Glucose Consumption
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:137  Target#:623  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page