condition found tbRes List
PBG, Propolis -bee glue: Click to Expand ⟱
Features: Compound
Brazilian Green Propolis often considered best
• Derived from Baccharis dracunulifolia, this type is rich in artepillin C.
• It has been widely researched for its anticancer, anti-inflammatory, and antioxidant properties.
-Propolis common researched flavonoids :chrysin, pinocembrin, galangin, pinobanksin(Pinocembrin)
-most representative phenolic acids were caffeic acid, p-coumaric acid, and ferulic acid, as well as their derivatives, DMCA and caffeic acid prenyl, benzyl, phenylethyl (CAPE), and cinnamyl esters
-One of the most studied active compounds of a poplar-type propolis is caffeic acid phenethyl ester (CAPE)
-caffeic acid phenethyl ester (CAPE), galangin, chrysin, nemorosone, propolin G, artepillin C, cardanol, pinocembrin, pinobanksin, chicoric acid, and phenolic acids (caffeic acid, ferulic acid, and coumaric acid), as well as luteolin, apigenin, myricetin, naringenin, kaempferol, quercetin, polysaccharides, tannins, terpenes, sterols, and aldehydes -content highly variable based on location and extraction
Two main factors of interest:
1. affects interstitual fluild pH
2. high concentration raises ROS (Reactive Oxygen Species), while low concentration may reduce ROS

- Artepillin-C (major phenolic compounds found in Brazilian green propolis (BGP))
- caffeic acid major source

Do not combine with 2DG

Pathways:
-Propolis compounds (e.g., artepillin C, caffeic acid phenethyl ester [CAPE]) can trigger apoptosis (programmed cell death) in cancer cells.
-Propolis has been shown to inhibit NF‑κB activation.
-Propolis extracts can cause cell cycle arrest at specific checkpoints (e.g., G0/G1 or G2/M phases).
-Enhance the body’s antitumor immune responses, for example by activating natural killer (NK) cells and modulating cytokine profiles.

-Note half-life no standard, high variablity of content.
BioAv poor water solubility, and low oral bioavailability.
Pathways:
- high concentration may induce ROS production, while low concentrations mya low it. This may apply to both normal and cancer cells. Normal Cells Example. (Also not sure if high level are acheivable in vivo due to bioavailability)
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ -->
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : NLRP3↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, RhoA↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, P53↑,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT, TOP1↓, TET1,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓,
- Others: PI3K↓, AKT↓, STAT↓, β-catenin↓, AMPK, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


EMT, Epithelial-Mesenchymal Transition: Click to Expand ⟱
Source:
Type:
Biological process in which epithelial cells lose their cell polarity and cell-cell adhesion properties and gain mesenchymal traits, such as increased motility and invasiveness. This process is pivotal during embryogenesis and wound healing. Hh signaling pathway is able to regulate the EMT. Snail, E-cadherin and N-cadherin, key components of EMT; EMT-related factors, E-cadherin, N-cadherin, vimentin; The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin.
EMT is regulated by various signaling pathways, including TGF-β, Wnt, Notch, and Hedgehog pathways. Transcription factors such as Snail, Slug, Twist, and ZEB play critical roles in repressing epithelial markers (like E-cadherin) and promoting mesenchymal markers (like N-cadherin and vimentin).
EMT is associated with increased tumor aggressiveness, enhanced migratory and invasive capabilities, and resistance to apoptosis.


Scientific Papers found: Click to Expand⟱
1651- CA,  PBG,    Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer
- Review, Var, NA
Apoptosis↑,
TumCCA↓, CAPE (1-80 uM) can stimulate apoptosis and cell cycle arrest (G1 phase
TumCMig↓,
TumMeta↓,
ChemoSen↑,
eff↑, Nanoparticles promote therapeutic effect of CA and CAPE in reducing cancer cell malignancy.
eff↑, improve capacity of CA and CAPE in cancer suppression, it has been co-administered with other anti-tumor compounds such as gallic acid
eff↓, Currently, solvent extraction is utilized by methanol and ethyl acetate combination at high temperatures. However, a low amount of CA is yielded via this pathway
eff↝, Decyl CA (DCA) is a novel derivative of CA but its role in affecting colorectal cancer has not been completely understood.
Dose∅, The CAPE administration (0-60 uM) induces both autophagy and apoptosis in C6 glioma cells.
AMPK↑, CAPE induces autophagy via AMPK upregulation.
p62↓, CAPE can induce autophagy via p62 down-regulation and LC3-II upregulation
LC3II↑,
Ca+2↑, CA (0-1000 uM) enhances Ca2+ accumulation in cells in a concentration-dependent manner
Bax:Bcl2↑, CA can promote Bax/Bcl-2 ratio i
CDK4↑, The administration of CAPE (1–80 μM) can stimulate apoptosis and cell cycle arrest (G1 phase) via upregulation of Bax, CDK4, CDK6 and Rb
CDK6↑,
RB1↑,
EMT↓, CAPE has demonstrated high potential in inhibiting EMT in nasopharyngeal caner via enhancing E-cadherin levels, and reducing vimentin and β-catenin levels.
E-cadherin↑,
Vim↓,
β-catenin/ZEB1↓,
NF-kB↓,
angioG↑, CAPE (0.01-1ug/ml) inhibited angiogenesis via VEGF down-regulation
VEGF↓,
TSP-1↑, and furthermore, CAPE is capable of increasing TSP-1 levels
MMP9↓, CAPE was found to reduce MMP-9 expression
MMP2↓, CAPE can also down-regulate MMP-2
ChemoSen↑, role of CA and its derivatives in enhancing therapy sensitivity of cancer cells.
eff↑, CA administration (100 uM) alone or its combination with metformin (10 mM) can induce AMPK signaling
ROS↑, CA can promote ROS levels to induce cell death in human squamous cell carcinoma
CSCs↓, CA can reduce self-renewal capacity of CSCs and their migratory ability in vitro and in vivo.
Fas↑, CAPE (0-100 uM) is capable of inducing Fas signaling to promote p53 expression, leading to apoptotic cell death via Bax and caspase activation
P53↑,
BAX↑,
Casp↑,
β-catenin/ZEB1↓, anti-tumor activity of CAPE is mediated via reducing β-catenin levels
NDRG1↑, CAPE (30 uM) can promote NDRG1 expression via MAPK activation and down-regulation of STAT3
STAT3↓,
MAPK↑, CAPE stimulates mitogen-activated protein kinase (MAPK) and ERK
ERK↑,
eff↑, Res, thymoquinone and CAPE mediate lung tumor cell death via Bax upregulation and Bcl-2 down-regulation.
eff↑, co-administration of CA (100 μM) and metformin (10 mM) is of interest in cervical squamous cell carcinoma therapy.
eff↑, in addition to CA, propolis contains other agents such as chrysin, p-coumaric acid and ferulic acid that are beneficial in tumor suppression.

2781- CHr,  PBG,    Chrysin a promising anticancer agent: recent perspectives
- Review, Var, NA
PI3K↓, It can block Phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling in different animals against various cancers
Akt↓,
mTOR↓,
MMP9↑, Chrysin strongly suppresses Matrix metalloproteinase-9 (MMP-9), Urokinase plasminogen activator (uPA) and Vascular endothelial growth factor (VEGF), i.e. factors that can cause cancer
uPA↓,
VEGF↓,
AR↓, Chrysin has the ability to suppress the androgen receptor (AR), a protein necessary for prostate cancer development and metastasis
Casp↑, starts the caspase cascade and blocks protein synthesis to kill lung cancer cells
TumMeta↓, Chrysin significantly decreased lung cancer metastasis i
TumCCA↑, Chrysin induces apoptosis and stops colon cancer cells in the G2/M cell cycle phase
angioG↓, Chrysin prevents tumor growth and cancer spread by blocking blood vessel expansion
BioAv↓, Chrysin’s solubility, accessibility and bioavailability may limit its medical use.
*hepatoP↑, As chrysin reduced oxidative stress and lipid peroxidation in rat liver cells exposed to a toxic chemical agent.
*neuroP↑, Protecting the brain against oxidative stress (GPx) may be aided by increasing levels of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx).
*SOD↑,
*GPx↑,
*ROS↓, A decrease in oxidative stress and an increase in antioxidant capacity may result from chrysin’s anti-inflammatory properties
*Inflam↓,
*Catalase↑, Supplementation with chrysin increased the activity of antioxidant enzymes like SOD and catalase and reduced the levels of oxidative stress markers like malondialdehyde (MDA) in the colon tissue of the rats.
*MDA↓, Antioxidant enzyme activity (SOD, CAT) and oxidative stress marker (MDA) levels were both enhanced by chrysin supplementation in mouse liver tissue
ROS↓, reduction of reactive oxygen species (ROS) and oxidative stress markers in the cancer cells further indicated the antioxidant activity of chrysin
BBB↑, After crossing the blood-brain barrier, it has been shown to accumulate there
Half-Life↓, The half-life of chrysin in rats is predicted to be close to 2 hours.
BioAv↑, Taking chrysin with food may increase the effectiveness of the supplement: increased by a factor of 1.8 when taken with a high-fat meal
ROS↑, In contrast to 5-FU/oxaliplatin, chrysin increases the production of reactive oxygen species (ROS), which in turn causes autophagy by stopping Akt and mTOR from doing their jobs
eff↑, mixture of chrysin and cisplatin caused the SCC-25 and CAL-27 cell lines to make more oxygen free radicals. After treatment with chrysin, cisplatin, or both, the amount of reactive oxygen species (ROS) was found to have gone up.
ROS↑, When reactive oxygen species (ROS) and calcium levels in the cytoplasm rise because of chrysin, OC cells die.
ROS↑, chrysin is the cause of death in both types of prostate cancer cells. It does this by depolarizing mitochondrial membrane potential (MMP), making reactive oxygen species (ROS), and starting lipid peroxidation.
lipid-P↑,
ER Stress↑, when chrysin is present in DU145 and PC-3 cells, the expression of a group of proteins that control ER stress goes up
NOTCH1↑, Chrysin increased the production of Notch 1 and hairy/enhancer of split 1 at the protein and mRNA levels, which stopped cells from dividing
NRF2↓, Not only did chrysin stop Nrf2 and the genes it controls from working, but it also caused MCF-7 breast cancer cells to die via apoptosis.
p‑FAK↓, After 48 hours of treatment with chrysin at amounts between 5 and 15 millimoles, p-FAK and RhoA were greatly lowered
Rho↓,
PCNA↓, Lung histology and immunoblotting studies of PCNA, COX-2, and NF-B showed that adding chrysin stopped the production of these proteins and maintained the balance of cells
COX2↓,
NF-kB↓,
PDK1↓, After the chrysin was injected, the genes PDK1, PDK3, and GLUT1 that are involved in glycolysis had less expression
PDK3↑,
GLUT1↓,
Glycolysis↓, chrysin stops glycolysis
mt-ATP↓, chrysin inhibits complex II and ATPases in the mitochondria of cancer cells
Ki-67↓, the amounts of Ki-67, which is a sign of growth, and c-Myc in the tumor tissues went down
cMyc↓,
ROCK1↓, (ROCK1), transgelin 2 (TAGLN2), and FCH and Mu domain containing endocytic adaptor 2 (FCHO2) were much lower.
TOP1↓, DNA topoisomerases and histone deacetylase were inhibited, along with the synthesis of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and (IL-1 beta), while the activity of protective signaling pathways was increased
TNF-α↓,
IL1β↓,
CycB↓, Chrysin suppressed cyclin B1 and CDK2 production in order to stop cancerous growth.
CDK2↓,
EMT↓, chrysin treatment can also stop EMT
STAT3↓, chrysin block the STAT3 and NF-B pathways, but it also greatly reduced PD-L1 production both in vivo and in vitro.
PD-L1↓,
IL2↑, chrysin increases both the rate of T cell growth and the amount of IL-2

3257- PBG,    The Potential Use of Propolis as a Primary or an Adjunctive Therapy in Respiratory Tract-Related Diseases and Disorders: A Systematic Scoping Review
- Review, Var, NA
CDK4↓, CAPE also induces G1 phase cell arrest by lowering the expression of CDK4, CDK6, Rb, and p-Rb. M
CDK6↓,
pRB↓,
ROS↓, Artepillin C, a bioactive component of Brazilian green propolis, reduces oxidative damage markers, namely 4-HNE-modified proteins, 8-OHdG, malonaldehyde, and thiobarbituric acid reactive substances in lung tissues with pulmonary adenocarcinoma
TumCCA↑, Propolin, a novel component of prenylflavanones in Taiwanese propolis, was demonstrated to have anti-cancer properties. Propolin H induces cell arrest at G1 phase and upregulates the expression of p21
P21↑,
PI3K↓, Propolin C also inhibits PI3K/Akt and ERK-mediated epithelial-to-mesenchymal transition by upregulating E-cadherin (epithelial cell marker) and downregulating vimentin
Akt↓,
EMT↓,
E-cadherin↑,
Vim↓,
*COX2↓, bioactive compounds such as CAPE, galangin significantly reduce the activity of lung cyclooxygenase (COX) and myeloperoxidase (MPO), and malonaldehyde (MDA), TNF-α, and IL-6 levels, while increasing the activity of catalase (CAT) and SOD
*MPO↓,
*MDA↓,
*TNF-α↓,
*IL6↓,
*Catalase↑,
*SOD↑,
*AST↓, Chrysin also reduces the expression of oxidative and inflammatory markers such as aspartate transaminase (AST), alanine aminotransferase (ALT), IL-1β, IL-10, TNF-α, and MDA levels and increases the antioxidant parameters such as SOD, CAT, and GPx
*ALAT↓,
*IL1β↓,
*IL10↓,
*GPx↓,
*TLR4↓, propolis also inhibits the expression of Toll-like receptor 4 (TLR4), macrophage infiltration, MPO activity, and apoptosis of lung tissues in septic animals
*Sepsis↓,
*IFN-γ↑, CAPE also significantly increases IFN-γ
*GSH↑, propolis significantly increased the level of GSH and the histological appearances of propolis-treated bleomycin-induced pulmonary fibrosis rats.
*NRF2↑, CAPE significantly increases the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2)
*α-SMA↓, propolis significantly inhibits the expression of α- SMA, collagen fibers, and TGF-1β.
*TGF-β↓,
*IL5↓, Propolis also inhibits the expression of inflammatory cytokines and chemokines such as TNF-α, IL-5, IL-6, IL-8, IL-10, NF-kB, IFN-γ, PGF2a, and PGE2.
*IL6↓,
*IL8↓,
*PGE2↓,
*NF-kB↓,
*MMP9↓, downregulating the expression of TGF-1β, ICAM-1, α-SMA, MMP-9, IgE, and IgG1.

1673- PBG,    An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms
- Review, Var, NA
TumCP↓, propolis-treated cells showed inhibition of cell proliferation and induction of apoptosis
Apoptosis↑,
TumCCA↑, cell cycle arrest potential against cancer cell lines
MALAT1↓, CAPE blocks the expression of the MALT1 gene to decrease the cell proliferation, invasion, and tumor growth of prostate carcinoma cells via the p53 and NF-κB signaling pathways
P53↑,
RadioS↑, Propolis capsules (400 mg, 3 times daily) is consumed for 10 days before radiotherapy, 10 days during radiation treatment, and 10 days after irradiation
OS↑, Patients who used propolis supplements had a considerably longer median disease-free lifetime.
ROS↑, Chinese propolis extract (EECP) significantly increased annexin A7 expression, ROS, NF-κB, and p65 expressions and dramatically altered the potential of mitochondrial membrane
NF-kB↓, Chrysin treatment in U937 cells (histiocytic lymphoma cells) showed induction of apoptosis by suppressing the PI3K/Akt signaling and inactivation of nuclear factor kappa B (NF-?B)/inhibitor of apoptosis (IAP)
p65↑,
MMP↓,
ROS↑, 25 to 100 μg/ml of Chinese propolis-treated cells showed increased ROS generation
MMP9↓, Cuban propolis (83 μg/ml) suppresses cell migration and invasion by inhibiting MMP-9 activity, β-catenin, vimentin expression, and decreased E-cadherin expression in human colorectal cancer
β-catenin/ZEB1↓,
Vim↓,
E-cadherin↓,
VEGF↓, Chinese red propolis and CAPE displayed a solid inhibitory effect in VEGF-mediated angiogenesis
EMT↓, Chinese propolis (12.5 μg/ml) inhibited Panc-1 cell migration by modulating the epithelial-mesenchymal transition


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
Akt↓,2,   AMPK↑,1,   angioG↓,1,   angioG↑,1,   Apoptosis↑,2,   AR↓,1,   mt-ATP↓,1,   BAX↑,1,   Bax:Bcl2↑,1,   BBB↑,1,   BioAv↓,1,   BioAv↑,1,   Ca+2↑,1,   Casp↑,2,   CDK2↓,1,   CDK4↓,1,   CDK4↑,1,   CDK6↓,1,   CDK6↑,1,   ChemoSen↑,2,   cMyc↓,1,   COX2↓,1,   CSCs↓,1,   CycB↓,1,   Dose∅,1,   E-cadherin↓,1,   E-cadherin↑,2,   eff↓,1,   eff↑,7,   eff↝,1,   EMT↓,4,   ER Stress↑,1,   ERK↑,1,   p‑FAK↓,1,   Fas↑,1,   GLUT1↓,1,   Glycolysis↓,1,   Half-Life↓,1,   IL1β↓,1,   IL2↑,1,   Ki-67↓,1,   LC3II↑,1,   lipid-P↑,1,   MALAT1↓,1,   MAPK↑,1,   MMP↓,1,   MMP2↓,1,   MMP9↓,2,   MMP9↑,1,   mTOR↓,1,   NDRG1↑,1,   NF-kB↓,3,   NOTCH1↑,1,   NRF2↓,1,   OS↑,1,   P21↑,1,   P53↑,2,   p62↓,1,   p65↑,1,   PCNA↓,1,   PD-L1↓,1,   PDK1↓,1,   PDK3↑,1,   PI3K↓,2,   pRB↓,1,   RadioS↑,1,   RB1↑,1,   Rho↓,1,   ROCK1↓,1,   ROS↓,2,   ROS↑,6,   STAT3↓,2,   TNF-α↓,1,   TOP1↓,1,   TSP-1↑,1,   TumCCA↓,1,   TumCCA↑,3,   TumCMig↓,1,   TumCP↓,1,   TumMeta↓,2,   uPA↓,1,   VEGF↓,3,   Vim↓,3,   β-catenin/ZEB1↓,3,  
Total Targets: 84

Results for Effect on Normal Cells:
ALAT↓,1,   AST↓,1,   Catalase↑,2,   COX2↓,1,   GPx↓,1,   GPx↑,1,   GSH↑,1,   hepatoP↑,1,   IFN-γ↑,1,   IL10↓,1,   IL1β↓,1,   IL5↓,1,   IL6↓,2,   IL8↓,1,   Inflam↓,1,   MDA↓,2,   MMP9↓,1,   MPO↓,1,   neuroP↑,1,   NF-kB↓,1,   NRF2↑,1,   PGE2↓,1,   ROS↓,1,   Sepsis↓,1,   SOD↑,2,   TGF-β↓,1,   TLR4↓,1,   TNF-α↓,1,   α-SMA↓,1,  
Total Targets: 29

Scientific Paper Hit Count for: EMT, Epithelial-Mesenchymal Transition
4 Propolis -bee glue
1 Caffeic acid
1 Chrysin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:137  Target#:96  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page