condition found
Features: |
Plant pigment (flavonoid) found in red wine, onions, green tea, apples and berries. Quercetin is thought to contribute to anticancer effects through several mechanisms: -Antioxidant Activity: -Induction of Apoptosis:modify Bax:Bcl-2 ratio -Anti-inflammatory Effects: -Cell Cycle Arrest: -Inhibition of Angiogenesis and Metastasis: (VEGF) Cellular Pathways: -PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism. -MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis. -NF-κB Pathway: downregulate NF-κB -JAK/STAT Pathway: interfere with the activation of STAT3 -Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways Quercetin has been used at doses around 500–1000 mg per day Quercetin’s bioavailability from foods or standard supplements can be low. -Note half-life 11 to 28 hours. BioAv low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC. Pathways: - induce ROS production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox" - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Confusing info about Lowering AntiOxidant defense in Cancer Cells: NRF2↓(some contrary), TrxR↓**, SOD↓(contrary), GSH↓ Catalase↓(contrary), HO1↓(some contrary), GPx↓(some contrary) - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑ - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1, - inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, - some indication of inhibiting Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD24↓, β-catenin↓, Notch2↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - SREBP (related to cholesterol). - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
Source: CGL-Driver Genes |
Type: Oncogene |
EZH2 (Enhancer of Zeste Homolog 2) is a gene that encodes a protein which is a key component of the Polycomb Repressive Complex 2 (PRC2). This complex is involved in the regulation of gene expression through histone methylation, specifically the trimethylation of histone H3 at lysine 27 (H3K27me3), which leads to transcriptional repression of target genes. EZH2 is often overexpressed in various types of cancers, including breast, prostate, and lymphoma. This overexpression can lead to the silencing of tumor suppressor genes, contributing to uncontrolled cell proliferation and survival. |
3359- | QC,  |   | Quercetin modifies 5′CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells |
- | in-vitro, | Cerv, | HeLa |
54- | QC,  |   | Quercetin‑3‑methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways |
- | in-vitro, | BC, | MCF-7 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:140 Target#:108 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid