condition found tbRes List
QC, Quercetin: Click to Expand ⟱
Features:
Plant pigment (flavonoid) found in red wine, onions, green tea, apples and berries.
Quercetin is thought to contribute to anticancer effects through several mechanisms:
-Antioxidant Activity:
-Induction of Apoptosis:modify Bax:Bcl-2 ratio
-Anti-inflammatory Effects:
-Cell Cycle Arrest:
-Inhibition of Angiogenesis and Metastasis: (VEGF)

Cellular Pathways:
-PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism.
-MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis.
-NF-κB Pathway: downregulate NF-κB
-JAK/STAT Pathway: interfere with the activation of STAT3
-Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways

Quercetin has been used at doses around 500–1000 mg per day
Quercetin’s bioavailability from foods or standard supplements can be low.

-Note half-life 11 to 28 hours.
BioAv low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC.
Pathways:
- induce ROS production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox"
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing info about Lowering AntiOxidant defense in Cancer Cells: NRF2↓(some contrary), TrxR↓**, SOD↓(contrary), GSH↓ Catalase↓(contrary), HO1↓(some contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓,
- some indication of inhibiting Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD24↓, β-catenin↓, Notch2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


selectivity, selectivity: Click to Expand ⟱
Source:
Type:
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues.

Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance

Factors that affect selectivity:
1. Ability of Cancer cells to preferentially absorb a product/drug
-EPR-enhanced permeability and retention of cancer cells
-nanoparticle formations/carriers may target cancer cells over normal cells
-Liposomal formations. Also negatively/positively charged affects absorbtion

2. Product/drug effect may be different for normal vs cancer cells
- hypoxia
- transition metal content levels (iron/copper) change probability of fenton reaction.
- pH levels
- antiOxidant levels and defense levels

3. Bio-availability


Scientific Papers found: Click to Expand⟱
2303- QC,  doxoR,    Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells
- in-vitro, BC, 4T1 - in-vivo, NA, NA
cardioP↑, Quercetin had better cardioprotective and hepatoprotective activities.
hepatoP↑,
TumCG↓, In vivo, quercetin suppressed tumor growth and prolonged survival in BALB/c mice bearing 4T1 breast cancer.
OS↑,
ChemoSen↑, quercetin enhanced therapeutic efficacy of DOX and simultaneously reduced DOX-induced toxic side effects
chemoP↑, IC50 of DOX in combination with quercetin 10 or 25 uM was increased by three- and fourfold, respectively, compared with that of DOX alone
Hif1a↓, Further study showed that quercetin suppressed intratumoral HIF-1α in a hypoxia-dependent way but increased its accumulation in normal cells
*Hif1a↑,
selectivity↑, quercetin could improve therapeutic index of DOX by its opposing effects on HIF-1α in tumor and normal cells
TumVol↓,
OS↑,

3380- QC,    Quercetin as a JAK–STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases
- Review, Var, NA - Review, Park, NA - Review, AD, NA
JAK↓, plant polyphenols, especially quercetin, exert their inhibitory effects on the JAK–STAT pathway through known and unknown mechanisms.
STAT↓,
Inflam↓, quercetin significantly reduced levels of inflammation moderators, including NO synthase, COX-2, and CRP, in a human hepatocyte-derived cell line
NO↓,
COX2↓,
CRP↓,
selectivity↑, , quercetin is not harmful to healthy cells, while it can impose cytotoxic effects on cancer cells through a variety of mechanisms,
*neuroP↑, Alzheimer’s disease because of its antioxidant and anti-inflammatory activity.
STAT3↓, demonstrated as a suppressor of the STAT3 activation signaling pathway
cycD1↓, Rb phosphorylation, cyclin D1 expression, and MMP-2 secretion are inhibited by 48 h treatment with 25 µM quercetin in T98G and U87 GBM cell lines
MMP2↓,
STAT4↓, by inhibiting IL-12-induced tyrosine phosphorylation of STAT3, STAT4, JAK2, and TYK2, quercetin inhibits the proliferation of T cells and differentiation of Th1
JAK2↓,
TumCP↓,
Diff↓,
*eff↑, administration of quercetin with piperine alone and in combination significantly prevented neuroinflammation via reducing the levels of IL-6, TNF-α (two potent activators of the JAK–STAT pathway), and IL-1β in PD in experimental rats
*IL6↓,
*TNF-α↓,
*IL1β↓,
*Aβ↓, quercetin suppressing β-secretase (an enzyme engaged in Aβ formation) and aggregation of Aβ

3343- QC,    Quercetin, a Flavonoid with Great Pharmacological Capacity
- Review, Var, NA - Review, AD, NA - Review, Arthritis, NA
*antiOx↑, Quercetin has a potent antioxidant capacity, being able to capture reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive chlorine species (ROC),which act as reducing agents by chelating transition-metal ions.
*ROS↓, Quercetin is a potent scavenger of reactive oxygen species (ROS), protecting the organism against oxidative stress
*angioG↓,
*Inflam↓, anti-inflammatory properties; the ability to protect low-density lipoprotein (LDL) oxidation, and the ability to inhibit angiogenesis;
*BioAv↓, It is known that the bioavailability of quercetin is usually relatively low (0.17–7 μg/mL), less than 10% of what is consumed, due to its poor water solubility (hydrophobicity), chemical stability, and absorption profile.
*Half-Life↑, their slow elimination since their half-life ranges from 11 to 48 h, which could favor their accumulation in plasma after repeated intakes
*GSH↑, Animal and cell studies have demonstrated that quercetin induces the synthesis of GSH
*SOD↑, increase in the expression of superoxide dismutase (SOD), catalase (CAT), and GSH with quercetin pretreatment
*Catalase↑,
*Nrf1↑, quercetin accomplishes this process involves increasing the activity of the nuclear factor erythroid 2-related factor 2 (NRF2), enhancing its binding to the ARE, reducing its degradation
*BP↓, quercetin has been shown to inhibit ACE activity, reducing blood pressure
*cardioP↑, quercetin has positive effects on cardiovascular diseases
*IL10↓, Under the influence of quercetin, the levels of interleukin 10 (IL-10), IL-1β, and TNF-α were reduced.
*TNF-α↓,
*Aβ↓, quercetin’s ability to modulate the enzyme activity in clearing amyloid-beta (Aβ) plaques, a hallmark of AD pathology.
*GSK‐3β↓, quercetin can inhibit the activity of glycogen synthase kinase 3β,
*tau↓, thus reducing tau aggregation and neurofibrillary tangles in the brain
*neuroP↑,
*Pain↓, quercetin reduces pain and inflammation associated with arthritis
*COX2↓, quercetin included the inhibition of oxidative stress, production of cytokines such as cyclooxygenase-2 (COX-2) and proteoglycan degradation, and activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) (Nrf2/HO-1)
*NRF2↑,
*HO-1↑,
*IL1β↓, Mechanisms included decreased levels of TNF-α, IL-1β, IL-17, and monocyte chemoattractant protein-1 (MCP-1)
*IL17↓,
*MCP1↓,
PKCδ↓, studies with human leukemia 60 (HL-60) cells report that concentrations between 20 and 30 µM are sufficient to exert an inhibitory effect on cytosolic PKC activity and membrane tyrosine protein kinase (TPK) activity.
ERK↓, 50 µM resulted in the blockade of the extracellular signal-regulated kinases (ERK1/2) pathway
BAX↓, higher doses (75–100 µM) were used, as these doses reduced the expression of proapoptotic factors such as Bcl-2-associated X protein (Bax) and caspases 3 and 9
cMyc↓, induce apoptosis at concentrations of 80 µM and also causes a downregulation of cellular myelocytomatosis (c-myc) and Kirsten RAt sarcoma (K-ras) oncogenes
KRAS↓,
ROS↓, compound’s antioxidative effect changes entirely to a prooxidant effect at high concentrations, which induces selective cytotoxicity
selectivity↑, On the other hand, when noncancerous cells are exposed to quercetin, it exerts cytoprotective effects;
tumCV↓, decrease cell viability in human glioma cultures of the U-118 MG cell line as well as an increase in death by apoptosis and cell arrest at the G2 checkpoint of the cell cycle.
Apoptosis↑,
TumCCA↑,
eff↑, quercetin combined with doxorubicin can induce multinucleation of invasive tumor cells, downregulate P-glycoprotein (P-gp) expression, increase cell sensitivity to doxorubicin,
P-gp↓,
eff↑, resveratrol, quercetin, and catechin can effectively block the cell cycle and reduce cell proliferation in vivo
eff↑, cotreatment with epigallocatechin gallate (EGCG) inhibited catechol-O-methyltransferase (COMT) activity, decreasing COMT protein content and thereby arresting the cell cycle of PC-3 human prostate cancer cells
eff↑, synergistic treatment of tamoxifen and quercetin was also able to inhibit prostate tumor formation by regulating angiogenesis
eff↑, coadministration of 2.5 μM of EGCG, genistein, and quercetin suppressed the cell proliferation of a prostate cancer cell line (CWR22Rv1) by controlling androgen receptor and NAD (P)H: quinone oxidoreductase 1 (NQO1) expression
CycB↓, It can also downregulate cyclin B1 and cyclin-dependent kinase-1 (CDK-1),
CDK1↓,
CDK4↓, quercetin causes a decrease in cyclins D1/Cdk4 and E/Cdk2 and an increase in p21 in vascular smooth muscle cells
CDK2↓,
TOP2↓, quercetin is known to be a potent inhibitor of topoisomerase II (TopoII), a cell cycle-associated enzyme necessary for DNA replication
Cyt‑c↑, quercetin can induce apoptosis (cell death) through caspase-3 and caspase-9 activation, cytochrome c release, and poly ADP ribose polymerase (PARP) cleavage
cl‑PARP↑,
MMP↓, quercetin induces the loss of mitochondrial membrane potential, leading to the activation of the caspase cascade and cleavage of PARP.
HSP70/HSPA5↓, apoptotic effects of quercetin may result from the inhibition of HSP kinases, followed by the downregulation of HSP-70 and HSP-90 protein expression
HSP90↓,
MDM2↓, (MDM2), an onco-protein that promotes p53 destruction, can be inhibited by quercetin
RAS↓, quercetin can prevent Ras proteins from being expressed. In one study, quercetin was found to inhibit the expression of Harvey rat sarcoma (H-Ras), K-Ras, and neuroblastoma rat sarcoma (N-Ras) in human breast cancer cells,
eff↑, there was a substantial difference in EMT markers such as vimentin, N-cadherin, Snail, Slug, Twist, and E-cadherin protein expression in response to AuNPs-Qu-5, inhibiting the migration and invasion of MCF-7 and MDA-MB cells

3344- QC,    Quercetin induced ROS production triggers mitochondrial cell death of human embryonic stem cells
- in-vitro, Nor, hESC
mt-ROS↑, mitochondrial reactive oxygen species (ROS), strongly induced by QC in human embryonic stem cells (hESCs) but not in human dermal fibroblasts (hDFs), were responsible for QC-mediated hESC’s cell death.
selectivity↑,
P53↑, . Increased p53 protein stability and subsequent mitochondrial localization by QC treatment triggered mitochondrial cell death only in hESCs.
ROS⇅, QC acts either as a pro-oxidant to be cytotoxic to cancer cells with active proliferation [8, 10] or as an anti-oxidant [9], depending on the cell models,

3353- QC,    Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells
- in-vitro, Oral, KON - in-vitro, Nor, MRC-5
tumCV↓, reduced the vitality of KON cells and had minimal effect on MRC cells.
selectivity↑, Owing to the appropriate dosages of quercetin needed to treat these diseases, normal cells do not exhibit any overtly harmful side effects.
TumCCA↑, quercetin increased the percentage of dead cells and cell cycle arrests in the S and G2/M phases.
TumCMig↓, quercetin inhibited KON cells’ capacity for migration and invasion in addition to their effects on cell stability and structure
TumCI↓,
Apoptosis↑, inducing apoptosis and preventing metastasis, quercetin was found to downregulate the expression of BCL-2/BCL-XL while increasing the expression of BAX.
TumMeta↓,
Bcl-2↓,
BAX↑,
TIMP1↑, TIMP-1 expression was upregulated while MMP-2 and MMP-9 were downregulated.
MMP2↓,
MMP9↓,
*Inflam↓, anti-inflammatory, anti-cancer, antibacterial, antifungal, anti-diabetic, antimalarial, neuroprotective, and cardioprotective properties.
*neuroP↑,
*cardioP↑,
p38↓, MCF-7 cells, quercetin successfully decreased the expression of phosphor p38MAPK, Twist, p21, and Cyclin D1
MAPK↓,
Twist↓,
P21↓,
cycD1↓,
Casp3↑, directly aided by the significant increase in caspase-3 and − 9 levels and activities
Casp9↑,
p‑Akt↓, High quercetin concentrations also caused an inhibition of Akt and ERK phosphorylation
p‑ERK↓,
CD44↓, reduced cell division and triggered apoptosis, albeit to a lesser degree in CD44+/CD24− cells.
CD24↓,
ChemoSen↑, combination of quercetin and doxorubicin caused G2/M arrest in T47D cells, and to a lesser amount in cancer stem cells (CSCs) that were isolate
MMP↓, (lower levels of ΔΨ m), which is followed by the release of Cyto C, AIF, and Endo G from mitochondria, which causes apoptosis and ultimately leads to cell death.
Cyt‑c↑,
AIF↑,
ROS↑, Compared to the control group, quercetin administration significantly raised ROS levels at 25, 50, 100, 200, and 400 µg/mL.
Ca+2↑, increased production of reactive oxygen species and Ca2+, decreased levels of mitochondrial membrane potential (ΔΨ m),
Hif1a↓, Quercetin treatment resulted in a considerable downregulation of HIF-1α, VEGF, MMP2, and MMP9 mRNA and protein expression levels in HOS cells.
VEGF↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
AIF↑,1,   p‑Akt↓,1,   Apoptosis↑,2,   BAX↓,1,   BAX↑,1,   Bcl-2↓,1,   Ca+2↑,1,   cardioP↑,1,   Casp3↑,1,   Casp9↑,1,   CD24↓,1,   CD44↓,1,   CDK1↓,1,   CDK2↓,1,   CDK4↓,1,   chemoP↑,1,   ChemoSen↑,2,   cMyc↓,1,   COX2↓,1,   CRP↓,1,   CycB↓,1,   cycD1↓,2,   Cyt‑c↑,2,   Diff↓,1,   eff↑,6,   ERK↓,1,   p‑ERK↓,1,   hepatoP↑,1,   Hif1a↓,2,   HSP70/HSPA5↓,1,   HSP90↓,1,   Inflam↓,1,   JAK↓,1,   JAK2↓,1,   KRAS↓,1,   MAPK↓,1,   MDM2↓,1,   MMP↓,2,   MMP2↓,2,   MMP9↓,1,   NO↓,1,   OS↑,2,   P-gp↓,1,   P21↓,1,   p38↓,1,   P53↑,1,   cl‑PARP↑,1,   PKCδ↓,1,   RAS↓,1,   ROS↓,1,   ROS↑,1,   ROS⇅,1,   mt-ROS↑,1,   selectivity↑,5,   STAT↓,1,   STAT3↓,1,   STAT4↓,1,   TIMP1↑,1,   TOP2↓,1,   TumCCA↑,2,   TumCG↓,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,1,   tumCV↓,2,   TumMeta↓,1,   TumVol↓,1,   Twist↓,1,   VEGF↓,1,  
Total Targets: 69

Results for Effect on Normal Cells:
angioG↓,1,   antiOx↑,1,   Aβ↓,2,   BioAv↓,1,   BP↓,1,   cardioP↑,2,   Catalase↑,1,   COX2↓,1,   eff↑,1,   GSH↑,1,   GSK‐3β↓,1,   Half-Life↑,1,   Hif1a↑,1,   HO-1↑,1,   IL10↓,1,   IL17↓,1,   IL1β↓,2,   IL6↓,1,   Inflam↓,2,   MCP1↓,1,   neuroP↑,3,   Nrf1↑,1,   NRF2↑,1,   Pain↓,1,   ROS↓,1,   SOD↑,1,   tau↓,1,   TNF-α↓,2,  
Total Targets: 28

Scientific Paper Hit Count for: selectivity, selectivity
5 Quercetin
1 doxorubicin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:140  Target#:1110  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page