condition found tbRes List
QC, Quercetin: Click to Expand ⟱
Features:
Plant pigment (flavonoid) found in red wine, onions, green tea, apples and berries.
Quercetin is thought to contribute to anticancer effects through several mechanisms:
-Antioxidant Activity:
-Induction of Apoptosis:modify Bax:Bcl-2 ratio
-Anti-inflammatory Effects:
-Cell Cycle Arrest:
-Inhibition of Angiogenesis and Metastasis: (VEGF)

Cellular Pathways:
-PI3K/Akt/mTOR Pathway: central to cell proliferation, survival, and metabolism.
-MAPK/ERK Pathway: influencing cell proliferation, differentiation, and apoptosis.
-NF-κB Pathway: downregulate NF-κB
-JAK/STAT Pathway: interfere with the activation of STAT3
-Apoptotic Pathways: intrinsic (mitochondrial) and extrinsic (death receptor-mediated) pathways

Quercetin has been used at doses around 500–1000 mg per day
Quercetin’s bioavailability from foods or standard supplements can be low.

-Note half-life 11 to 28 hours.
BioAv low 1-10%, poor water-solubility, consuming with fat may improve bioavialability. also piperine or VitC.
Pathways:
- induce ROS production in cancer cells (higher dose). Typicallys Lowers ROS in normal cells(unless it is high dose?)or depends on Redox status?. "quercetin paradox"
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Confusing info about Lowering AntiOxidant defense in Cancer Cells: NRF2↓(some contrary), TrxR↓**, SOD↓(contrary), GSH↓ Catalase↓(contrary), HO1↓(some contrary), GPx↓(some contrary)
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, uPA↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, TET↑
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓, TOP1↓, TET1,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓,
- some indication of inhibiting Cancer Stem Cells : CSC↓, CK2↓, Hh↓, CD24↓, β-catenin↓, Notch2↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCMig, Tumor cell migration: Click to Expand ⟱
Source:
Type:
Tumor cell migration is a critical process in cancer progression and metastasis, which is the spread of cancer cells from the primary tumor to distant sites in the body.


Scientific Papers found: Click to Expand⟱
3371- QC,    Quercetin induces MGMT+ glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways
- in-vitro, GBM, T98G
TIMP2↑, MMP2, and MMP9 was significantly decreased by quercetin treatment, while TIMP1 and TIMP2 were upregulated (
TumCG↓, Quercetin significantly suppressed the growth and migration of human GBM T98G cells, induced apoptosis, and arrested cells in the S-phase cell cycle
TumCMig↓,
Apoptosis↑,
TumCCA↑,
MMP↓, collapse of mitochondrial membrane potential, ROS generation, enhanced Bax/Bcl-2 ratio, and strengthened cleaved-Caspase 9 and cleaved-Caspase 3 suggested the involvement of ROS-mediated mitochondria-dependent apoptosis in the process
ROS↑,
Bax:Bcl2↑,
cl‑Casp9↑,
cl‑Casp3↑,
DNAdam↑, quercetin-induced apoptosis was accompanied by intense DNA double-strand breaks (DSBs), γH2AX foci formation, methylation of MGMT promoter, increased cleaved-PARP, and reduced MGMT expression
γH2AX↑,
MGMT↓,
cl‑PARP↑,

3373- QC,    The Effect of Quercetin in the Yishen Tongluo Jiedu Recipe on the Development of Prostate Cancer through the Akt1-related CXCL12/ CXCR4 Pathway
- in-vitro, Pca, DU145
TumCP↓, Quercetin inhibited the proliferation of DU145 cells by upregulating caspase-3 and downregulating Bcl-2 expression, promoting apoptosis and reducing invasion and migration abilities.
Casp3↑,
Bcl-2↓,
Apoptosis↑,
TumCI↓,
TumCMig↓,
CXCL12↓, In vivo, quercetin downregulated CXCL12 and CXCR4 expressions and inhibited PCa development by the Akt1-related CXCL12/CXCR4 pathway.
CXCR4↓,

3374- QC,    Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis
- Review, Oral, NA - Review, AD, NA
α-SMA↓, In oral cancer cells, quercetin could inhibit EMT via up-regulation of claudin-1 and E-cadherin and down-regulation of α-SMA, vimentin, fibronectin, and Slug [29]
α-SMA↑, OSC20 Invasion: ↓Migration, ↑Expression of epithelial markers (E-cadherin & claudin-1), ↑Expression of mesenchymal markers (fibronectin, vimentin, & α-SMA),
TumCP↓, quercetin significantly reduced cancer cell proliferation, cell viability, tumor volume, invasion, metastasis and migration
tumCV↓,
TumVol↓,
TumCI↓,
TumMeta↓,
TumCMig↓,
ROS↑, This anti-cancer agent induced oxidative stress and apoptosis in the cancer cells.
Apoptosis↑,
BioAv↓, The efficacy of quercetin (as lipophilic) is much impacted by its poor absorption rates, which define its bioavailability. The research on quercetin's bioavailability in animal models shows it may be as low as 10%
*neuroP↑, quercetin has been observed to exhibit neuroprotective effects in Alzheimer's disease through its anti-oxidants, and anti-inflammatory properties and inhibition of amyloid-β (Aβ) fibril formation
*antiOx↑,
*Inflam↓,
*Aβ↓,
*cardioP↑, Additionally, quercetin protects the heart by stopping oxidative stress, inflammation, apoptosis, and protein kinases
MMP↓, ↓MMP, ↑Cytosolic Cyt. C,
Cyt‑c↑,
MMP2↓, ↓Activation MMP-2 & MMP-9, ↓Expression levels of EMT inducers & MMPs, Downregulated Twist & Slug
MMP9↓,
EMT↓,
MMPs↓,
Twist↓,
Slug↓,
Ca+2↑, ↑Apoptosis, ↑ROS, ↑Ca2+ production, ↑Activities of caspase‑3, caspase‑8 & caspase‑9
AIF↑, ↑Mitochondrial release of Cyt. C, AIF, & Endo G
Endon↑,
P-gp↓, ↓ Protein levels of P-gp, & P-gp Expression
LDH↑, ↑LDH release
HK2↓, CAL27 cells) 80µM/24h Molecular markers: ↓Activities of HK, PK, & LDH, ↓Glycolysis, ↓Glucose uptake, ↓Lactate production, ↓Viability, ↓G3BP1, & YWHA2 protein levels
PKA↓,
Glycolysis↓,
GlucoseCon↓,
lactateProd↓,
GRP78/BiP↑, Quercetin controls the activation of intracellular Ca2+ and calpain-1, which then activates GRP78, caspase-12, and C/EBP homologous protein (CHOP) in oral cancer cells
Casp12↑,
CHOP↑,

3339- QC,    Quercetin suppresses ROS production and migration by specifically targeting Rac1 activation in gliomas
- in-vitro, GBM, C6 - in-vitro, GBM, IMR32
BBB↑, capacity to cross the blood–brain barrier
tumCV↓, Quercetin significantly reduced the viability and migration of cells in an ROS-dependent manner with the concomitant inhibition of Rac1/p66Shc expression and ROS production in naïve and Rac1/p66Shc-transfected cell lines, suggestive of preventing Rac
TumCMig↓,
Rac1↓,
p66Shc↓,
ROS↓, treatment of cells with quercetin not only reduced the levels of ROS (Figure 4) but also showed a significant inhibition of p66Shc/Rac1

3353- QC,    Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells
- in-vitro, Oral, KON - in-vitro, Nor, MRC-5
tumCV↓, reduced the vitality of KON cells and had minimal effect on MRC cells.
selectivity↑, Owing to the appropriate dosages of quercetin needed to treat these diseases, normal cells do not exhibit any overtly harmful side effects.
TumCCA↑, quercetin increased the percentage of dead cells and cell cycle arrests in the S and G2/M phases.
TumCMig↓, quercetin inhibited KON cells’ capacity for migration and invasion in addition to their effects on cell stability and structure
TumCI↓,
Apoptosis↑, inducing apoptosis and preventing metastasis, quercetin was found to downregulate the expression of BCL-2/BCL-XL while increasing the expression of BAX.
TumMeta↓,
Bcl-2↓,
BAX↑,
TIMP1↑, TIMP-1 expression was upregulated while MMP-2 and MMP-9 were downregulated.
MMP2↓,
MMP9↓,
*Inflam↓, anti-inflammatory, anti-cancer, antibacterial, antifungal, anti-diabetic, antimalarial, neuroprotective, and cardioprotective properties.
*neuroP↑,
*cardioP↑,
p38↓, MCF-7 cells, quercetin successfully decreased the expression of phosphor p38MAPK, Twist, p21, and Cyclin D1
MAPK↓,
Twist↓,
P21↓,
cycD1↓,
Casp3↑, directly aided by the significant increase in caspase-3 and − 9 levels and activities
Casp9↑,
p‑Akt↓, High quercetin concentrations also caused an inhibition of Akt and ERK phosphorylation
p‑ERK↓,
CD44↓, reduced cell division and triggered apoptosis, albeit to a lesser degree in CD44+/CD24− cells.
CD24↓,
ChemoSen↑, combination of quercetin and doxorubicin caused G2/M arrest in T47D cells, and to a lesser amount in cancer stem cells (CSCs) that were isolate
MMP↓, (lower levels of ΔΨ m), which is followed by the release of Cyto C, AIF, and Endo G from mitochondria, which causes apoptosis and ultimately leads to cell death.
Cyt‑c↑,
AIF↑,
ROS↑, Compared to the control group, quercetin administration significantly raised ROS levels at 25, 50, 100, 200, and 400 µg/mL.
Ca+2↑, increased production of reactive oxygen species and Ca2+, decreased levels of mitochondrial membrane potential (ΔΨ m),
Hif1a↓, Quercetin treatment resulted in a considerable downregulation of HIF-1α, VEGF, MMP2, and MMP9 mRNA and protein expression levels in HOS cells.
VEGF↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
AIF↑,2,   p‑Akt↓,1,   Apoptosis↑,4,   BAX↑,1,   Bax:Bcl2↑,1,   BBB↑,1,   Bcl-2↓,2,   BioAv↓,1,   Ca+2↑,2,   Casp12↑,1,   Casp3↑,2,   cl‑Casp3↑,1,   Casp9↑,1,   cl‑Casp9↑,1,   CD24↓,1,   CD44↓,1,   ChemoSen↑,1,   CHOP↑,1,   CXCL12↓,1,   CXCR4↓,1,   cycD1↓,1,   Cyt‑c↑,2,   DNAdam↑,1,   EMT↓,1,   Endon↑,1,   p‑ERK↓,1,   GlucoseCon↓,1,   Glycolysis↓,1,   GRP78/BiP↑,1,   Hif1a↓,1,   HK2↓,1,   lactateProd↓,1,   LDH↑,1,   MAPK↓,1,   MGMT↓,1,   MMP↓,3,   MMP2↓,2,   MMP9↓,2,   MMPs↓,1,   P-gp↓,1,   P21↓,1,   p38↓,1,   p66Shc↓,1,   cl‑PARP↑,1,   PKA↓,1,   Rac1↓,1,   ROS↓,1,   ROS↑,3,   selectivity↑,1,   Slug↓,1,   TIMP1↑,1,   TIMP2↑,1,   TumCCA↑,2,   TumCG↓,1,   TumCI↓,3,   TumCMig↓,5,   TumCP↓,2,   tumCV↓,3,   TumMeta↓,2,   TumVol↓,1,   Twist↓,2,   VEGF↓,1,   α-SMA↓,1,   α-SMA↑,1,   γH2AX↑,1,  
Total Targets: 65

Results for Effect on Normal Cells:
antiOx↑,1,   Aβ↓,1,   cardioP↑,2,   Inflam↓,2,   neuroP↑,2,  
Total Targets: 5

Scientific Paper Hit Count for: TumCMig, Tumor cell migration
5 Quercetin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:140  Target#:326  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page